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ABSTRACT. In this paper I have depicted the properties of Modular Groups and Mod-
ular forms and discussed a particular application of modular forms - Eisenstein series
and introduce Elliptic curves.
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1. INTRODUCTION

In class we discussed about the Special linear groups SLo(R) which is the set of all
matrices with real entries such that the determinant is 1 with the group operations of
matrix multiplication and inversion. This group is a normal subgroup of the General
linear group GLa(R) (set of 2 x 2 invertible matrices (1.1)).

Consider

SLy(R) = {(ﬁ Z) ca,b,c,de R, ad — bc = 1}.

And we define a group action on H = {z € C : Im(z) > 0} via fractional linear transfor-
mations as follows

Let I' := SLy(Z) < SLe(R) (1.2) and SLy(Z) G H as above (Here I is called the Full

@ b)‘z_aerb ze H

a b
7:(0 d).]I-]I—>]H[ z»—wyz:’y(z):(C J =

Modular Group). An action is faithful if the kernel of the action is trivial [1, p. 39|
or equivalently for any g € G and x € X(G G X) there is no group elements except the
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identity such that gr = z. In order to make this action faithful on H we define the
Modular Group I'(1) :=I'/{+1} and this group acts faithfully on H (2.4).

Proof: From [1, p. 29| a group is normal iff it is the kernel of some homomorphism.
Let R* be the mult. group of non zero reals. Define the map:

¢ GLy(R) > R, X > det(X)

for each X € GLy(R). This map is well defined as for X € GLy(R),det(X) # 0. Since
det(XY) = det(X).det(Y) by properties of determinant this map is a homomorphism.
Now the kernel of the homomorphism is

Kerp = {X € GLy(R)|det(X) = 1} = SLy(R) by def.
Therefore SLy(R) < GLo(R). [ |

Proof: T is non empty as it contains I. AlsoV X eI, X~ 'eT as

a b\ 1 d —b
c d ad—bc\ —c a
and —A— = 1. Therefore if we take X,Y € I, X.Y ! €T by matrix multiplication. M

1.3: I' x H — H is a well defined group action.
Proof: First note that if Im(z) > 0 then Im(yz) > 0 and that H is mapped to H

az+0b  (az+b)(d+ c2)

Well = =
ell, 7(z) cz+d lcz + d|?
 bd + ac|z]* + Re(z)(ad + be) + i(ad — be) Im(2)
B lcz + d|?
 bd + ac|z|* + Re(2)(ad + be) + i Im(z)
B lcz + d|?
Hence, Im(vyz) = % and the action is well defined.
Nowlet zeHandy=( @ 2 ),y =(% ¥ )er
ow let z and vy = cd”y_ Jd
Then ,
(i) L0, z=2z
01 B az+ .
i) () = b\ dz+b  Yorra T (ad +bc)z+abl + bd
T =\ e d dz+d  dz+V _(ca’+dc’)z—|—cb’—|—dd’
c +d
dz+d

aa’ +bd  ab + bd ,
“\ed +dd e +dd )77 () 2



2. MODULAR GROUPS
Formal Definition [2]: The modular group I'(1) is the group of linear fractional
transformations of the upper half of the complex plane, which have the form

az +b
cz+d

Z >

where a,b,c,d € Z and ad — bc = 1.

2.1: {+1} = Z(T")) where Z(I') := {X e T VY e[, XY = Y X}.

(<€) is trivial.
(2) Fix X = ( Z £ > € Z(T') and choose Y = “ Z . Doing Y X = XY gives us

the following equations, bg = fc,c(e — h) = (a — d)g, (a — d)f = b(e — h).
Selection 1: Choose Y 3¢ =0 and b # 0 .The above equations become
bg=0,0=(a—d)g,(a—d)f =ble —h) Since b #0 = ¢g=0.
Selection 2: Choose Y 20 =0 and ¢ # 0. Then

0= fe,ele—h)=(a—d)g,(a—d)f =0) = f=0.

Selection 3: Choose Y 3 b # 0. From the above deductions f = 0 = g,
0=0,c(e—h)=0,0=0b(e—h) = e =h This means X = ( ¢V

0 e |€ Z(T") and since
det(X) =1 = e+ 1.

Now we know Z(I') < T from [1]. Therefore since Z(I') = {£I} and Z(I") we conclude
that I'(1) is a group [1, p. 29] as I'(1) := I'/{£1} (def).

Generators of the full modular group I

2.2: I" and T'(1) are generated bySandTwhereSz(? 0_1)andT= (1] 1)
Proof: [4, p.6] Observe that T" = (1) ;L ,nez.
(@ b\ (1 n a b a+ nc b+nd

cd) \01 c d

9 a b —c —d
and S* = —I. Thus S = ()

c d a
. a b
Now cons1derg=<c d) I)
Case (1): Suppose ¢ =0
0 b T fa=d=1
Thenad=1=>a=d=i1zg=<0 d>_ or
ST ifa=d=-1

Case (2): Suppose ¢ # 0. WLOG, we can suppose |a| = |¢|. (in terms of a-as the
transformation S on say g flips the rows so if either one is bigger we can apply this
transformation) By the division algorithm we can write a = cg+r 0<r <|¢|



P (24)-(3 (22 ()

Well @ — cq < cas r < |¢| 1. Applying S we switch these entries (and the signs) and we
applying the division theorem (ie repeating the above procedure) until we get the lower
left entry equal to 0, but this means it has reached case 1 and we are done. |

az+b
cz+d

2.3: Every Automorphism of H is of the form ~(z) = where a,b,c,d € Z and

ad — bc = 1.|5]

2.4: The group of Automorphisms of H is isomorphic to I'(1), Aut(H) = I'(1).
Proof: Consider the map,

a b az+b
QOFHAUt(H), <C d)»—)fy(z>zcz+d
This is a homomorphism as consider
b Iy / %
( Z Z > — (2) = _azid’ < (Z/ 2/ — 7'(z) = 2277 then the matrix
cz

dz+d
product maps to the corresponding composition. That is, the product is

a b a b\ [ ad +b ab+bd
c d d d )\ cd+dd cb+dd
while the corresponding composition is the image of the product,

(aa" + b)) z + (ab’ + bd')
(ca' +dc) z + cb + dd'

(yo)(z) =

Therefore this is a homomorphism.Its also surjective. The kernel of this map is {+1}.
Now by the First isomorphism theorem, we get

I/{+£l} ~ Aut(H) = T'(1) =~ Aut H)
(A really clean proof of this is also in [6, p.3-5]) [ |

3. FUNDAMENTAL DOMAIN

Definition: Fundamental domain for the upper halfplane H under the action of I' is a
set F containing the representative of each orbit (&) of H under I" or equivalently the
fundamental domain for I' is a connected domain F such that:

eVzeH3iyelsy(z)eF
o if 21,20 € F 2v(z) = 25 for some y € " then z; = 25 and v = +1.

Recall: Suppose I' G H then
O,={gz|gel'} «— {yeH|gx=yforsomegel} «— {yeH |z ~y}

3.1: Fix z € H. The set (m,n) € Z*\(m,n) # (0,0) such that |mz + n| <1 is finite and
non empty.



Proof: Let z = x + 1y, then
mz +n| <1 <= (mz+n)’+(my)* <1 = (my)*<1 = |m| < %, mis
bounded. Also |mz +n| <= —

1
l<mz+n<=— —1—-mr<n<l—mzxnis
bounded. Also, substituting (m,n) =

(0,1) shows its non empty. [ |

3.2: Fundamental Domain.
(i) VzeH3IyeTl'an(z)elF
(ii) Consider z; # 2o,

—_

Re(z1) =+, 22 =21 F1

2 € Or(z1) = {1y 21 =7,7el'} = 2’_1
a1 =120 = —

z

Recall: T'(z) = < é 1 ) which can be represented as

_ 1
Tz=z+1,T'2=2—1and S = (1) 01>WhichisSz=—.
z
(iii) Let z € F and Stabr(z) = {y |y € I', vz = z} the stabilizer of z € I". One has

Stabr(z) = {£1} except in the following cases:

L zZ =1
° Z:p:e27rz/3
° Z:_ﬁ:eﬂ'l/g

The Fundamental Domain for I' is the region

F:={zeH:|z| > 1,|Re(z)| <

N | —

(The grey area is the fundamental domain)

Proof: |4, p.7-9] |7, p.3-5]
ko1

Let7=<m n)eF.



(i) Then,

Im(72) = Im(z2)

_ M 03
Imz + n|? (13)

As (m,n) # (0,0),we see that |mz + n| attains a minimum as -y varies over I' (using
lemma) .Now choose |mz + n| to be minimal, therefore Im(7yz) is maximal for v € I'
By translation we can ensure |z| < 3, (this is so as we are always in the upper half
plane so as we are trying to find the fundamental domain we can always ensure by
translation (Orbit definition) that the real part is between -1/2 and 1/2) (Here
translation means we can find n € Z 3 y(z) + n has real part < 1/2).

Now we claim |yz| = 1. Suppose not, ie |yz| < 1. Consider S = ( [1) (;1 > where S
acts on vz to yield S(yz) = ;_217 Also Im(;—zl) = IT;(Z'QZ ) Therefore,
I
Im(S~vz) = 1|n(7|22) >Im(yz) (asvyz<1)
vz
Contradiction! (as Im(vz) was assumed to be maximal).
S* v 5
)| 7 1
- s
.-'"'-'-.-.__-"“:F FIJ‘-.____.,-—_.___“
4 il ~
, I §
/7 53 : e
’ ) | \
/! \
/ S \
- - | \
| - S, . \
jff r! I\3 : :
Iy r N 't/m | 1
| 1y ! |
— L L

(ii) (iii) Since |z| = 1 and |Re(z)| < 3, we get Im(z) > \/73 as their sum-squared > 1.
We have to prove no two points in the interior of ' share the same orbit. Assume

21, 22 € F and WLOG that Im (z3) = Im (z1) and there exists an vy € I' 3 2z = y(21). It
follows that Im (z5) = Im (7.21) = Im (21) |mz + n|™> = Im (2) . Hence |mz; +n|* < 1
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(as we need |7i2(f72|2 > Im(z;)). We know Im (z1) > ‘/75, now,

Imz; +nl*> = (mRe(z1) + n)? + (mIm(z))?
m? Re(21)? + 2mn Re(z1) + n? + m? Im(z)?
Suppose |m| = 2, () becomes,

m? + 2mnRe(z1) +n? - (a) = 4+ 4nRe(z;) + n? = 4 + 2n + n? (as max value of
Re(z1) is 1/2. Then 4 + 2n 4+ n? = 4 + n(2 + n). The zeroes of n(2 + n) are when
n = 0,—2 and its negative when n = —1. If n = —1 (this is the value for which the
expression is smallest) then 4 + 2n + n* =4 — 2 + 1 = 3 4. Therefore

Im| <2 = me {-1,0,1}. Now case by case consider,

> m? + 2mnRe(z1) +n? - ().

—kz—1 kz+1
Before I prove this note that:(—v)(z) = : - i = vz , this basically shows
—-mz—n mz+n

that the action 7 is the same thing as the action —v.
CASE 1: m =0,n=+1,n# 1 (by eq «). Since kn — Im = 1 we get that v or —y must

be equal to TV = ( (1) Jl ) But for v(z;) to lie in F again only € {—1,0, 1} are possible

as T7 by definition takes 77z — z + j. For j = 0, we have z; = 2. For j = +1 by the
definition of 7" we see that z5 and z; must lie on the boundary lines Re(z) = i% of F
and hence not in the interior of F'

CASE 2: m =1, by eq (a) |n| < 1. Suppose n = 0,m = 1, then |z;| = 1(unit circle) as

1| = 1 and |myz + n| < 1. Now |z1| = 1 = kn — Im = —[. Therefore
k —1 k‘Zl -1 1 -1 1 .
29 =7(z1) = 10 ) - - k— o But ]2—1] = W = 1. This means —1/|z|

also belongs in the complex unit circle. The values of £ which make this possible are:
(We cant consider the points on the unit circle below the complex plane as we are
considering the points on the upper half plane and consider the diagram)

1
e k= 0: then vz, = — multiplying both sides by z; we get 22 = —1 = z; = +i, but
<1

1 _
since we are in H, z; = i, but — = ¢. This gives us ( (1) 0 L > € Stabp(7).

<1
-1 1 1
o k=1: suppose — =p = 2z = —p, but k — — =1— — = —p. Therefore we
21 21 21
started with —p and its image is the same. Therefore } (;1 € Stabr(—p)
e k= —1: the exact same reasoning as above but here z; = p. Therefore

( ! 51 ) e Stabr(p).

In all the three above cases we get zo = z;. Now suppose n = 1, then by («) this is
possible iff Re(z) = —1/2. We get 1 = |mz; + n| = |21 + 1|. The only point with the
property is p (as |p + 1| < 1 is within the unit circle). Therefore let z; = p. We know
kn—Im=1=Fk—1.

B (k1 [k k-1 Ckptk—-1 k(p+1) 1 but
2=l )P7 1 P="p%1 ~ o+t pr1v




p+1=—p, we get k—— = k+ p. The only values of k£ where this point is in [F are the
—p
points when:

e k=0: we get 0+ p we get the matrix < (1) 1_1 ) € Stabr(p) which fixes the point p.
ek=1:wegetl+p=—p

Now suppose d = —1: We take z; = —p and eventually get two cases k = —1,k = 0. We
get the matrix < (1) :i ) € Stabp(—p)

CASE 3: m = —1: Recall the action of v is the same as —v. Therefore, the proof follow
from the case m = 1.

4. MODULAR FORMS
Definition: Holomorphic functions are complex differentiable functions.

Definition: A function f: C — C is said to be complex differentiable at z € C if
o FE ) = ()

heC h
h—0

exists. Again, if the limit exists, its value is called f'(z). If f is complex differentiable at
every z € U < C, then f is said to be holomorphic on U.
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Definition: [4 , p.1-2] A modular form of weight & for

F:{(a b ) :a,b,c,deZ,ad—bc=1}
c d

is a complex-valued function f on the upper half-plane H satisfying the following three
conditions:

1. f is a holomorphic function on H.
a b ) e I' as above, we have:
c d

(cz+d) (e +d)*1(2)

3. As Im(z) — o0, f(z) is bounded.

2. For any z € H and any matrix <

Note:
e Consider T = <

flz+1) = (02 + 1)*f(2) = f(2).

S =
—

1 ) e I', well the modularity condition means

e Consider S = ( (1) 1_01 € I' the modularity condition means
—1
F(—) =) /).
e Consider — < - ) € I' the modularity condition means
f(z) = f(2). If k is odd then the f = 0.

4.1: If a function f : H — C satisfies the modularity condition with weight k for two
matrices v; and 7, in I" then it satisfies the modularity condition with weight k for ;7

and for the inverse ;.

al /

Proof. |4, p.5] Let v, = ( Z Z ) and v, = ( o Z, ) The modularity condition with

weight % for these matrices says f (v12) = (cz + d)" f(2) and f (y22) = (2 + d)* f(2)
for all z € H. It follows that for all z,

f((n72) 2) = f (1 (22))
= (2 +d)" f(12)
= (cyz +d)" (dz + d)* f(2)
Since 12z = (a’z + ') / (¢ z + d'), a calculation shows
(o + d)F (2 + d)* = ((cd + dd) z + (cb + dd'))*
SO

F((ne) 2) = ((cd +dc) z + (b + dd))* f(z),
9



and the bottom matrix entries of

[ a b a b\ * #
=\ . g d d ) \ cd +dd cb+dd

n !

are exactly the " ¢ " and " d " that appear when we write f ((1172) 2) as (cz + d)*f(z) .
Thus f satisfies the modularity condition with weight k for ;7.
We now want to prove that if f (v12) = (¢z + d)" f(z) for all z € H then the same

condition holds with 7, replaced by 77!, which is a ) because ~; has

determinant 1. Replacing z with ; 'z in the modularity condition for the matrix v;, we
get
_ k _
f(2) = (c(n'z) +d)" f(n'2)
for all z. Dividing both sides by (c (’yfl) + d)k,

~1z =; z
f(71 ) (071_12+d)kf( )

for all z. Since ¢y, 'z +d = (ad — be) / (—c12 + a1) = 1/ (—cz + a),
f('z) = (mez +a)* f(2)

for all z, which is the modularity condition for v;* [}

Note: (4.1) shows us that the set of all v € Z for which f satisfies the modularity
condition with weight % is a subgroup of T'.

4.2: [4, p.5-6] If the set {71,...,vm} generates I' and a function f : H — C satisfies the
modularity condition with weight k for each 7; then f satisfies the modularity condition
with weight & for all of I'.
Proof: From note, if the set {71, ...,7,,} contains a set of generators of I" then it is all
of T.

[ |

Note: To check if a f : H — C is a modular form we it suffices to check property (1),
(3) from the definition of modular forms as well as the modularity condition

f(z+1) = f(z) and f(=}) = 2*.f(z) as the group T is generated by T and S (ie if the
function satisfies the conditions for 7" and S then its true for their products as the
condition (2.2) is preserved under matrix multiplication and inversion).
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5. EISENSTEIN SERIES

=

i 1 1 1 i 1 1 i 1 1 L 1 1 i i " 1
1.5 1 0.5 | 0.5 1 15

A modular form : Eisenstein series of weight 4

Definition: [4 , p.11] For even k > 4, the weight k£ Eisenstein series is

Gk(z) = Z L

T
i (mz +n)
(mym)#(0,0)

Definition:[4 , p.18| The above can be also written as:

1 1
Ek(z)=§ Z (cz 4+ d)*

(¢,d)eZ?
ged(e,d)=1

5.1: The Eisenstein series G(z) is absolutely convergent: for each z € H, the series
Dmn)=00) LMz + nl¥ converges. |4, p.11-12]

5.2: For even k > 4, the Eisenstein series G, is a modular form of weight & for T". [4,
p.12]

5.3 [4, p.18] For even k > 4,
Gr(z) = 20(k).Ex(2)
Proof: Note 0 # a € Z, ged(a, 0) = a. For (0,0) # (m,n) € Z?, with v = ged(m, n),



Grl(2) = Z (mz—i—n Z 2 cz/z—i-du

(m,n)eZ? vzl (ed)
ged(e,d)=
DI IS S CEN
k
SV & (cz + d & (cz +d)
ged(ce,d)=1 ged(e,d)=1

These calculations are valid since the series G (z) converges absolutely for all integers

k > 3 It follows that . .
E _ - -
K2 =5 ) (cz + d)F

(c,d)eZ?
ged(e,d)=1

as the series defining GG}, and Ej, cancel to zero for odd k.

Definition: (8 , p.1| For z =z + iy € H, k = 0 + it,Re(k) > 1 the non holomorphic

eisenstein series is .
1 1

Gi(2) = 5 %
(0,0)#(m,n)eZ? mzon

Definition:|8 , p.1] The above series can also be written as

1 Im(z)*
E)=5 )
2 (c,d)eZ?,gcd(c,d)= ‘CZ + d‘
5.4: For all z € H and Rek > 1,
Gr(2) = ((2k) Ek(2)
Proof: |8 , p.2| Following a similar argument as the start of (5.2),

Then
Gy =1 % 3 ¥
g 2 _, Imz +n[*

v=1 (m,n)eZ?,gcd(m,n)

Dy oy
B | lvez +vd*

v=1 (c,d)eZ? ,gcd(c,d)=

2 |cz+d|2k2y N

(c,d)eZ?,gcd(c,d)=

= C(2k) Ex(2)

N —
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6. ELLiPTIC CURVES

(This section will contain a brief introduction to elliptic curves)
What is an elliptic curve?

10
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FIGURE 1. y* = 2% — 42 + 6 FIGURE 2. %> = 2% — 42 + 6
over R |9 , p.4] over Fig7 [9 , p.5]

An Elliptic curve is an equation of the form
y* =23+ Az + B, for some constants A, B.

with discriminant

A = 4A% + 27B? is nonzero.
The main question mathematicians study for elliptic curves are how many rational
numbers satisfy the equation y? = 2° + Ax + B. Since there maybe infinitely many, we
consider working over a finite field F, = {0,1,---p — 1}, p - prime. To make this a field
we define operations (+, x) and are done mod(p)

Taniyama-Shimura Conjecture: The conjecture says that every rational elliptic curve
over Q is a modular form .

13



7. DISCUSSION

Throughout this paper I showed the following:

e Section 1, 2: I show the properties of the full modular group and modular group
using concepts such as normal subgroups, group actions , automorphisms,
generators and isomorphism theorem.

e Section 3: I discuss the definition of the fundamental domain which involves
orbits and stablisers of the H under the action of I' and how periodic functions
under translations are invariant.

e Section 4, 5, 6: I introduce modular forms and the applications of the same -
Eisensteins series and elliptic curves.

Note: The eisenstein series are automorphic as well ie : Ei(y(2)) = Ex(z) , convergent
and admits a fourier expansion as well!
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