
MODULAR GROUPS

JOSHUA GEORGE

Abstract. In this paper I have depicted the properties of Modular Groups and Mod-
ular forms and discussed a particular application of modular forms - Eisenstein series
and introduce Elliptic curves.
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1. Introduction

In class we discussed about the Special linear groups SL2pRq which is the set of all
matrices with real entries such that the determinant is 1 with the group operations of
matrix multiplication and inversion. This group is a normal subgroup of the General
linear group GL2pRq (set of 2 ˆ 2 invertible matrices (1.1)).

Consider

SL2pRq “

"ˆ

a b
c d

˙

: a, b, c, d P R, ad ´ bc “ 1

*

.

And we define a group action on H “ tz P C : Impzq ą 0u via fractional linear transfor-
mations as follows

γ “

ˆ

a b
c d

˙

: H Ñ H z ÞÑ γz “ γpzq “

ˆ

a b
c d

˙

¨ z “
az ` b

cz ` d
, z P H

Let Γ :“ SL2pZq ď SL2pRq (1.2) and SL2pZq ü H as above (Here Γ is called the Full
Modular Group). An action is faithful if the kernel of the action is trivial [1, p. 39]
or equivalently for any g P G and x P XpG ü Xq there is no group elements except the
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identity such that gx “ x. In order to make this action faithful on H we define the
Modular Group Γp1q :“ Γ{t˘Iu and this group acts faithfully on H (2.4).

1.1: SL2pRq �GL2pRq.
Proof: From [1, p. 29] a group is normal iff it is the kernel of some homomorphism.
Let Rˆ be the mult. group of non zero reals. Define the map:

φ : GL2pRq Ñ Rˆ, X ÞÑ detpXq

for each X P GL2pRq. This map is well defined as for X P GL2pRq, detpXq ‰ 0. Since
detpXY q “ detpXq. detpY q by properties of determinant this map is a homomorphism.
Now the kernel of the homomorphism is

Kerφ “ tX P GL2pRq| detpXq “ 1u “ SL2pRq by def.
Therefore SL2pRq �GL2pRq. ■

1.2: Γ ď SL2pR).
Proof: Γ is non empty as it contains I. Also @ X P Γ, X´1 P Γ as

ˆ

a b
c d

˙´1

“
1

ad ´ bc

ˆ

d ´b
´c a

˙

and 1
ad´bc

“ 1. Therefore if we take X, Y P Γ, X.Y ´1 P Γ by matrix multiplication. ■

1.3: Γ ˆ H Ñ H is a well defined group action.
Proof : First note that if Impzq ą 0 then Impγzq ą 0 and that H is mapped to H

Well, γpzq “
az ` b

cz ` d
“

paz ` bqpd ` cz̄q

|cz ` d|2

=
bd ` ac|z|2 ` Repzqpad ` bcq ` ipad ´ bcq Impzq

|cz ` d|2

=
bd ` ac|z|2 ` Repzqpad ` bcq ` i Impzq

|cz ` d|2

Hence, Impγzq “
Impzq

|cz`d|2
and the action is well defined.

Now let z P H and γ “

ˆ

a b
c d

˙

, γ1 “

ˆ

a1 b1

c1 d1

˙

P Γ

Then ,

(i)
ˆ

1 0
0 1

˙

¨ z “ z

(ii) γ pγ1zq “

ˆ

a b
c d

˙

a1z ` b1

c1z ` d1
“

a
a1z ` b1

c1z ` d1
` b

c
a1z ` b1

c1z ` d1
` d

“
paa1 ` bc1q z ` ab1 ` bd1

pca1 ` dc1q z ` cb1 ` dd1

“

ˆ

aa1 ` bc1 ab1 ` bd1

ca1 ` dc1 cb1 ` dd1

˙

z “ pγγ1q z ■
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2. Modular Groups

Formal Definition [2]: The modular group Γp1q is the group of linear fractional
transformations of the upper half of the complex plane, which have the form

z ÞÑ
az ` b

cz ` d

where a, b, c, d P Z and ad ´ bc “ 1.

2.1: t˘Iu “ ZpΓqq where ZpΓq :“ tX P Γ |@ Y P Γ, XY “ Y Xu.
(Ď) is trivial.

(Ě) Fix X “

ˆ

e f
g h

˙

P ZpΓq and choose Y “

ˆ

a b
c d

˙

. Doing Y X “ XY gives us

the following equations, bg “ fc, cpe ´ hq “ pa ´ dqg, pa ´ dqf “ bpe ´ hq.
Selection 1: Choose Y Q c “ 0 and b ‰ 0 .The above equations become
bg “ 0, 0 “ pa ´ dqg, pa ´ dqf “ bpe ´ hq Since b ‰ 0 ùñ g “ 0.
Selection 2: Choose Y Q b “ 0 and c ‰ 0. Then
0 “ fc, cpe ´ hq “ pa ´ dqg, pa ´ dqf “ 0q ùñ f “ 0.
Selection 3: Choose Y Q b ‰ 0. From the above deductions f “ 0 “ g,

0 “ 0, cpe´ hq “ 0, 0 “ bpe´ hq ùñ e “ h This means X “

ˆ

e 0
0 e

˙

P ZpΓq and since

detpXq “ 1 ùñ e ˘ 1. ■

Now we know ZpΓq � Γ from [1]. Therefore since ZpΓq “ t˘Iu and ZpΓq we conclude
that Γp1q is a group [1, p. 29] as Γp1q :“ Γ{t˘Iu (def).

Generators of the full modular group Γ.

2.2: Γ and Γp1q are generated by S and T where S “

ˆ

0 ´1
1 0

˙

and T “

ˆ

1 1
0 1

˙

.

Proof: [4, p.6] Observe that T n “

ˆ

1 n
0 1

˙

, n P Z.

T n

ˆ

a b
c d

˙

“

ˆ

1 n
0 1

˙ ˆ

a b
c d

˙

“

ˆ

a ` nc b ` nd
c d

˙

and S2 “ ´I. Thus S

ˆ

a b
c d

˙

“

ˆ

´c ´d
a b

˙

¨ ¨ ¨ pαq

Now consider g “

ˆ

a b
c d

˙

P Γq

Case p1q: Suppose c “ 0

Then ad “ 1 ñ a “ d “ ˘1 ùñ g “

ˆ

a b1

0 d

˙

“

$

&

%

T b1 if a “ d “ 1
or
S2T 1 if a “ d “ ´1

Case p2q: Suppose c ‰ 0. WLOG, we can suppose |a| ě |c|. (in terms of α-as the
transformation S on say g flips the rows so if either one is bigger we can apply this
transformation) By the division algorithm we can write a “ cq ` r 0 ď r ă |c|
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T´q

ˆ

a b
c d

˙

“

ˆ

1 ´q
0 1

˙ ˆ

a b
c d

˙

“

ˆ

a ´ cq b ´ qd
c d

˙

Well a ´ cq ă c as r ă |c| 1. Applying S we switch these entries (and the signs) and we
applying the division theorem (ie repeating the above procedure) until we get the lower
left entry equal to 0, but this means it has reached case 1 and we are done. ■

2.3: Every Automorphism of H is of the form γpzq “ az`b
cz`d

where a, b, c, d P Z and
ad ´ bc “ 1.[5]

2.4: The group of Automorphisms of H is isomorphic to Γp1q, AutpHq – Γp1q.
Proof: Consider the map,

φ : Γ Ñ AutpHq,

ˆ

a b
c d

˙

ÞÝÑ γpzq “
az ` b

cz ` d

This is a homomorphism as consider
ˆ

a b
c d

˙

ÞÝÑ γpzq “
az ` b

cz ` d
,

ˆ

a1 b1

c1 d1

˙

ÞÝÑ γ1pzq “
a1z ` b1

c1z ` d1
then the matrix

product maps to the corresponding composition. That is, the product is
ˆ

a b
c d

˙ ˆ

a1 b1

c1 d1

˙

“

ˆ

aa1 ` bc1 ab1 ` bd1

ca1 ` dc1 cb1 ` dd1

˙

while the corresponding composition is the image of the product,

pγ ˝ γ1
qpzq “

paa1 ` bc1q z ` pab1 ` bd1q

pca1 ` dc1q z ` cb1 ` dd1

Therefore this is a homomorphism.Its also surjective. The kernel of this map is t˘Iu.
Now by the First isomorphism theorem, we get

Γ{t˘Iu – AutpHq ñ Γp1q – AutHq

(A really clean proof of this is also in [6, p.3-5]) ■

3. Fundamental Domain

Definition: Fundamental domain for the upper halfplane H under the action of Γ is a
set F containing the representative of each orbit (O) of H under Γ or equivalently the
fundamental domain for Γ is a connected domain F such that:

‚ @z P H D γ P Γ Q γpzq P F
‚ if z1, z2 P F Q γpz1q “ z2 for some γ P Γ then z1 “ z2 and γ “ ˘I.

Recall: Suppose Γ ü H then

Ox “ tg.x |g P Γu ðñ ty P H |g.x “ y for some g P Γu ðñ ty P H |x „ yu

3.1: Fix z P H. The set pm,nq P Z2zpm,nq ‰ p0, 0q such that |mz ` n| ď 1 is finite and
non empty.
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Proof : Let z “ x ` iy, then
|mz ` n| ď 1 ðñ pmx ` nq2 ` pmyq2 ď 1 ùñ pmyq2 ď 1 ùñ |m| ă 1

?
y
, m is

bounded. Also |mz ` n| ď ùñ ´1 ď mz ` n ď ùñ ´1 ´ mx ď n ď 1 ´ mx, n is
bounded. Also, substituting pm,nq “ p0, 1q shows its non empty. ■

3.2: Fundamental Domain.
(i) @z P H D γ P Γ Q γpzq P F
(ii) Consider z1 ‰ z2,

z2 P OΓpz1q “ tτ |γ.z1 “ τ, γ P Γu ùñ

$

’

&

’

%

Repz1q “ ˘
1

2
, z2 “ z1 ¯ 1

|z1| “ 1, z2 “
´1

z

Recall: T pzq “

ˆ

1 1
0 1

˙

which can be represented as

Tz “ z ` 1, T´1z “ z ´ 1 and S “

ˆ

0 ´1
1 0

˙

which is Sz “
´1

z
.

(iii) Let z P F and StabΓpzq “ tγ | γ P Γ, γz “ zu the stabilizer of z P Γ. One has
StabΓpzq “ t˘Iu except in the following cases:

‚ z “ i
‚ z “ ρ “ e2πi{3

‚ z “ ´ρ̄ “ eπi{3

The Fundamental Domain for Γ is the region

F :“ tz P H : |z| ě 1, |Repzq| ď
1

2
u

(The grey area is the fundamental domain)

Proof : [4, p.7-9] [7, p.3-5]

Let γ “

ˆ

k l
m n

˙

P Γ.
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(i) Then,

Impγzq “
Impzq

|mz ` n|
2 , p1.3q

As pm,nq ‰ p0, 0q,we see that |mz ` n| attains a minimum as γ varies over Γ (using
lemma) .Now choose |mz ` n| to be minimal, therefore Impγzq is maximal for γ P Γ
By translation we can ensure |x| ď 1

2
, (this is so as we are always in the upper half

plane so as we are trying to find the fundamental domain we can always ensure by
translation (Orbit definition) that the real part is between -1/2 and 1/2) (Here
translation means we can find n P Z Q γpzq ` n has real part ď 1{2).

Now we claim |γz| ě 1. Suppose not, ie |γz| ă 1. Consider S “

ˆ

0 ´1
1 0

˙

where S

acts on γz to yield Spγzq “ ´1
γz

, Also Imp´1
γz

q “
Impγzq

|γz|2
Therefore,

ImpSγzq “
Impγzq

|γz|2
ą Impγzq p as γz ă 1q

Contradiction! (as Impγzq was assumed to be maximal).

(ii) (iii) Since |z| ě 1 and |Repzq| ď 1
2
, we get Impzq ě

?
3
2

as their sum-squared ě 1.
We have to prove no two points in the interior of F share the same orbit.Assume
z1, z2 P F and WLOG that Im pz2q ě Im pz1q and there exists an γ P Γ Q z2 “ γpz1q. It
follows that Im pz2q “ Im pγ.z1q “ Im pz1q |mz1 ` n|

´2
ě Im pz1q . Hence |mz1 ` n|

2
ď 1
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(as we need Impz1q

|mz1`n|2
ě Impz1q). We know Im pz1q ě

?
3
2

, now,
|mz1 ` n|2 “ pmRepz1q ` nq2 ` pm Impz1qq2 “

m2Repz1q
2 ` 2mnRepz1q ` n2 ` m2 Impz1q

2 ě m2 ` 2mnRepz1q ` n2 ¨ ¨ ¨ pαq.
Suppose |m| ě 2, pαq becomes,
m2 ` 2mnRepz1q ` n2 ¨ ¨ ¨ pαq ě 4 ` 4nRepz1q ` n2 ě 4 ` 2n ` n2 (as max value of
Repz1q is 1/2. Then 4 ` 2n ` n2 “ 4 ` np2 ` nq. The zeroes of np2 ` nq are when
n “ 0,´2 and its negative when n “ ´1. If n “ ´1 (this is the value for which the
expression is smallest) then 4 ` 2n ` n2 “ 4 ´ 2 ` 1 “ 3  . Therefore
|m| ă 2 ùñ m P t´1, 0, 1u. Now case by case consider,

Before I prove this note that:p´γqpzq “
´kz ´ l

´mz ´ n
“

kz ` l

mz ` n
“ γz , this basically shows

that the action γ is the same thing as the action ´γ.
CASE 1: m “ 0, n “ ˘1, n ‰ 1 (by eq α). Since kn ´ lm “ 1 we get that γ or ´γ must

be equal to T j “

ˆ

1 j
0 1

˙

. But for γpz1q to lie in F again only P t´1, 0, 1u are possible

as T j by definition takes T jz ÞÑ z ` j. For j “ 0, we have z1 “ z2. For j “ ˘1 by the
definition of T we see that z2 and z1 must lie on the boundary lines Repzq “ ˘1

2
of F

and hence not in the interior of F .

CASE 2: m “ 1, by eq (αq |n| ď 1. Suppose n “ 0,m “ 1, then |z1| “ 1(unit circle) as
|z1| ě 1 and |m1z ` n| ď 1. Now |z1| “ 1 “ kn ´ lm “ ´l. Therefore

z2 “ γpz1q “

ˆ

k ´1
1 0

˙

“
kz1 ´ 1

z1
“ k ´

1

z1
. But |

´1

z1
| “

1

|z1|
“ 1. This means ´1{|z1|

also belongs in the complex unit circle. The values of k which make this possible are:
(We cant consider the points on the unit circle below the complex plane as we are
considering the points on the upper half plane and consider the diagram)

‚ k “ 0: then γz1 “
1

z1
multiplying both sides by z1 we get z21 “ ´1 ùñ z1 “ ˘i, but

since we are in H, z1 “ i, but
1

z1
“ i. This gives us

ˆ

0 ´1
1 0

˙

P StabΓpiq.

‚ k “ 1: suppose
´1

z1
“ ρ ùñ z1 “ ´ρ, but k ´

1

z1
“ 1 ´

1

z1
“ ´ρ. Therefore we

started with ´ρ and its image is the same. Therefore
ˆ

1 ´1
1 0

˙

P StabΓp´ρq

‚ k “ ´1: the exact same reasoning as above but here z1 “ ρ. Therefore
ˆ

´1 ´1
1 0

˙

P StabΓpρq.

In all the three above cases we get z2 “ z1. Now suppose n “ 1, then by pαq this is
possible iff Repzq “ ´1{2. We get 1 ě |mz1 ` n| “ |z1 ` 1|. The only point with the
property is ρ (as |ρ ` 1| ď 1 is within the unit circle). Therefore let z1 “ ρ. We know
kn ´ lm “ 1 “ k ´ l.

z2 “ γz1 “

ˆ

k l
1 1

˙

ρ “

ˆ

k k ´ 1
1 1

˙

ρ “
kρ ` k ´ 1

ρ ` 1
“

kpρ ` 1q

ρ ` 1
´

1

ρ ` 1
, but
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ρ` 1 “ ´ρ, we get k ´
1

´ρ
“ k ` ρ. The only values of k where this point is in F are the

points when:

‚ k “ 0: we get 0 ` ρ we get the matrix
ˆ

0 ´1
1 1

˙

P StabΓpρq which fixes the point ρ.

‚ k “ 1: we get 1 ` ρ “ ´ρ

Now suppose d “ ´1: We take z1 “ ´ρ and eventually get two cases k “ ´1, k “ 0. We

get the matrix
ˆ

0 ´1
1 ´1

˙

P StabΓp´ρq

CASE 3: m “ ´1: Recall the action of γ is the same as ´γ. Therefore, the proof follow
from the case m “ 1. ■

4. Modular Forms

Definition: Holomorphic functions are complex differentiable functions.
Definition: A function f : C Ñ C is said to be complex differentiable at z P C if

lim
hPC
hÑ0

fpz ` hq ´ fpzq

h

exists. Again, if the limit exists, its value is called f 1pzq. If f is complex differentiable at
every z P U Ă C, then f is said to be holomorphic on U .

Modular form
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Definition: [4 , p.1-2] A modular form of weight k for

Γ “

"ˆ

a b
c d

˙

: a, b, c, d P Z, ad ´ bc “ 1

*

is a complex-valued function f on the upper half-plane H satisfying the following three
conditions:

1. f is a holomorphic function on H.

2. For any z P H and any matrix
ˆ

a b
c d

˙

P Γ as above, we have:

f

ˆ

az ` b

cz ` d

˙

“ pcz ` dq
kfpzq

3. As Impzq Ñ 8, fpzq is bounded.

Note:

‚ Consider T “

ˆ

1 1
0 1

˙

P Γ, well the modularity condition means

fpz ` 1q “ p0z ` 1qkfpzq “ fpzq.

‚ Consider S “

ˆ

0 ´1
1 10

˙

P Γ the modularity condition means

fp
´1

z
q “ pzqkfpzq.

‚ Consider ´I “

ˆ

´1 0
0 ´1

˙

P Γ the modularity condition means

fpzq “ p´1qkfpzq. If k is odd then the f ” 0.

4.1: If a function f : H Ñ C satisfies the modularity condition with weight k for two
matrices γ1 and γ2 in Γ then it satisfies the modularity condition with weight k for γ1γ2
and for the inverse γ´1

1 .

Proof. [4, p.5] Let γ1 “

ˆ

a b
c d

˙

and γ2 “

ˆ

a1 b1

c1 d1

˙

. The modularity condition with

weight k for these matrices says f pγ1zq “ pcz ` dq
k fpzq and f pγ2zq “ pc1z ` d1q

k fpzq

for all z P H. It follows that for all z,

f ppγ1γ2q zq “ f pγ1 pγ2zqq

“ pcγ2z ` dq
k f pγ2zq

“ pcγ2z ` dq
k

pc1z ` d1
q
k
fpzq

Since γ2z “ pa1z ` b1q { pc1z ` d1q, a calculation shows

pcγ2z ` dq
k

pc1z ` dq
k

“ ppca1
` dc1

q z ` pcb1
` dd1

qq
k

so
f ppγ1γ2q zq “ ppca1

` dc1
q z ` pcb1

` dd1
qq

k
fpzq,
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and the bottom matrix entries of

γ1γ2 “

ˆ

a b
c d

˙ ˆ

a1 b1

c1 d1

˙

“

ˆ

˚ ˚

ca1 ` dc1 cb1 ` dd1

˙

are exactly the " c " and " d " that appear when we write f ppγ1γ2q zq as pcz ` dqkfpzq .
Thus f satisfies the modularity condition with weight k for γ1γ2.
We now want to prove that if f pγ1zq “ pcz ` dq

k fpzq for all z P H then the same

condition holds with γ1 replaced by γ´1
1 , which is

ˆ

d ´b
´c a

˙

because γ1 has

determinant 1. Replacing z with γ´1
1 z in the modularity condition for the matrix γ1, we

get
fpzq “

`

c
`

γ´1
1 z

˘

` d
˘k

f
`

γ´1
1 z

˘

for all z. Dividing both sides by
`

c
`

γ´1
1

˘

` d
˘k,

f
`

γ´1
1 z

˘

“
1

`

cγ´1
1 z ` d

˘k
fpzq

for all z. Since cγ´1
1 z ` d “ pad ´ bcq { p´c1z ` a1q “ 1{ p´cz ` aq,

f
`

γ´1
1 z

˘

“ p´cz ` aq
k fpzq

for all z, which is the modularity condition for γ´1
1 ■.

Note: (4.1) shows us that the set of all γ P Z for which f satisfies the modularity
condition with weight k is a subgroup of Γ.

4.2: [4, p.5-6] If the set tγ1, . . . , γmu generates Γ and a function f : H Ñ C satisfies the
modularity condition with weight k for each γi then f satisfies the modularity condition
with weight k for all of Γ.
Proof : From note, if the set tγ1, . . . , γmu contains a set of generators of Γ then it is all
of Γ.

■

Note: To check if a f : H ÞÑ C is a modular form we it suffices to check property (1),
(3) from the definition of modular forms as well as the modularity condition
fpz ` 1q “ fpzq and fp´1

z
q “ zk.fpzq as the group Γ is generated by T and S (ie if the

function satisfies the conditions for T and S then its true for their products as the
condition (2.2) is preserved under matrix multiplication and inversion).
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5. Eisenstein Series

A modular form : Eisenstein series of weight 4

Definition: [4 , p.11] For even k ě 4, the weight k Eisenstein series is

Gkpzq :“
ÿ

pm,nqPZ2

pm,nq‰p0,0q

1

pmz ` nqk
.

Definition:[4 , p.18] The above can be also written as:

Ekpzq “
1

2

ÿ

pc,dqPZ2

gcdpc,dq“1

1

pcz ` dqk

5.1: The Eisenstein series Gkpzq is absolutely convergent: for each z P H, the series
ř

pm,nq‰p0,0q
1{|mz ` n|k converges. [4, p.11-12]

5.2: For even k ě 4, the Eisenstein series Gk is a modular form of weight k for Γ. [4,
p.12]

5.3 [4, p.18] For even k ě 4,

Gkpzq “ 2ζpkq.Ekpzq

Proof : Note 0 ‰ a P Z, gcdpa, 0q “ a. For p0, 0q ‰ pm,nq P Z2, with ν “ gcdpm,nq,

gcd
´m

ν
,
n

ν

¯

“ 1 let c “
m

ν
, d “

m

ν
11



Gkpzq “
ÿ

pm,nqPZ2

1

pmz ` nqk
“

ÿ

νě1

ÿ

pc,dq

gcdpc,dq“ν

1

pcνz ` dνqk

“
ÿ

νě1

1

νk

ÿ

pc,dq

gcdpc,dq“1

1

pcz ` dqk
“ ζpkq

ÿ

pc,dq

gcdpc,dq“1

1

pcz ` dqk

These calculations are valid since the series Gkpzq converges absolutely for all integers
k ě 3 It follows that

Ekpzq “
1

2

ÿ

pc,dqPZ2

gcdpc,dq“1

1

pcz ` dqk

as the series defining Gk and Ek cancel to zero for odd k. ■

Definition: [8 , p.1] For z “ x ` iy P H, k “ σ ` it,Repkq ą 1 the non holomorphic
eisenstein series is

Gkpzq “
1

2

ÿ

p0,0q‰pm,nqPZ2

Impzqk

|mz ` n|2k

Definition:[8 , p.1] The above series can also be written as

Ekpzq “
1

2

ÿ

pc,dqPZ2,gcdpc,dq“1

Impzqk

|cz ` d|2k
.

5.4: For all z P H and Re k ą 1,
Gkpzq “ ζp2kqEkpzq

Proof: [8 , p.2] Following a similar argument as the start of (5.2),

gcd
´m

ν
,
n

ν

¯

“ 1 let c “
m

ν
, d “

m

ν
Then

Gkpzq “
1

2

ÿ

νě1

ÿ

pm,nqPZ2,gcdpm,nq“ν

yk

|mz ` n|2k

“
1

2

ÿ

νě1

ÿ

pc,dqPZ2,gcdpc,dq“1

yk

|νcz ` νd|2k

“
1

2

ÿ

pc,dqPZ2,gcdpc,dq“1

yk

|cz ` d|2k

ÿ

νě0

ν´2k

“ ζp2kqEkpzq

■
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6. Elliptic Curves

(This section will contain a brief introduction to elliptic curves)

What is an elliptic curve?

Figure 1. y2 “ x3 ´ 4x ` 6
over R [9 , p.4]

Figure 2. y2 “ x3 ´ 4x ` 6
over F197 [9 , p.5]

An Elliptic curve is an equation of the form
y2 “ x3

` Ax ` B, for some constants A,B.

with discriminant
∆ “ 4A3

` 27B2 is nonzero.
The main question mathematicians study for elliptic curves are how many rational
numbers satisfy the equation y2 “ x3 ` Ax ` B. Since there maybe infinitely many, we
consider working over a finite field Fp “ t0, 1, ¨ ¨ ¨ p ´ 1u, p - prime. To make this a field
we define operations p`,ˆq and are done modppq

Taniyama-Shimura Conjecture: The conjecture says that every rational elliptic curve
over Q is a modular form .

13



7. Discussion

Throughout this paper I showed the following:
‚ Section 1, 2: I show the properties of the full modular group and modular group

using concepts such as normal subgroups, group actions , automorphisms,
generators and isomorphism theorem.

‚ Section 3: I discuss the definition of the fundamental domain which involves
orbits and stablisers of the H under the action of Γ and how periodic functions
under translations are invariant.

‚ Section 4, 5, 6: I introduce modular forms and the applications of the same -
Eisensteins series and elliptic curves.

Note: The eisenstein series are automorphic as well ie : Ekpγpzqq “ Ekpzq , convergent
and admits a fourier expansion as well!
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