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Abstract

In this paper we explore how public health mea-
sures implemented have affected the growth of
tuberculosis in South Africa. To this day, tu-
berculosis is the leading cause of death due to
infection, despite a cure in the form of drugs
and medications existing. In many third world
countries like South Africa, tuberculosis has
greatly impacted their way of life. To better un-
derstand tuberculosis, we model data presented
from the World Health Organization and sim-
ulate the number of TB cases in South Africa.
Using a modified SIR model that considers the
influx and deaths of individuals, we first model
what the current trends of tuberculosis are.
Then we modify the parameters with respect
to public health measures and interpret what
these results mean biologically. The intention
of this paper is to gain insight on an infectious
killer that is not publicized on mainstream me-
dia and to educate people about the dangers
that still lurk all around the world.

1 Introduction

The quantitative measurements of the life sci-
ences are extremely complicated and yield com-
plex data. To disentangle and understand
data, mathematicians have relied on statistics,
mathematical methods, and modern technology
(Kranz 13). Thus mathematical modelling is
crucial to multiple areas of research and our
understanding of the world. Perhaps one of the

most paramount accomplishments of science is
the utilization of mathematics to model deadly
diseases. Data modelling has enhanced our un-
derstanding of diseases far more than individu-
ally analyzing each case. Though personal hy-
giene gave humans the upper hand on threaten-
ing microorganisms, field experiments, growth
chamber experiments, and the combination of
the aforementioned have gifted us with essential
knowledge for combating current diseases and
future pandemics. Modelling diseases has be-
come the accepted form of understanding how
infections of certain diseases grow and decay.
Though perfectly predicting the number of in-
fections that will occur is impossible, mathe-
maticians show that we can model behaviours
and trends of infections (Kabunga 1).

One of the most documented diseases
throughout history is tuberculosis (TB). TB is
an infectious disease, caused by the bacteria
Mycobacterium tuberculosis, that most promi-
nently affects the lungs. This organism was
discovered in the late 19th century, affecting 1
in 7 people (World Health Organization). The
disease can easily be spread through the air
by methods of coughing, sneezing, or spitting.
Doctors have attempted to treat TB for many
years, recommending treatment that consisted
of only rest, good food, and warmth. However,
in 1943 Selman Waksman found a cure for Tu-
berculosis in the form of antibiotics. This sci-
entific discovery earned Selman a Nobel prize
(Selman). The ability to spread through the
air makes TB the top infectious killer, spread-
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ing through 10 million people every year and
killing 1.5 million of them (World Health Or-
ganization). Though this deadly disease affects
millions every year, it is easily treatable and
curable. Approximately 1 in 4 people are es-
timated to have been infected with Tuberculo-
sis, while 5-15% are estimated to have fallen
ill with Tuberculosis (World Health Organiza-
tion). Furthermore, TB affects those who are
combating HIV and diabetes at a higher rate
than those who are relatively healthy (CDC).

As knowledge of the human body is ex-
panded, it became easier to develop new drugs
to combat such infections. Though first-world
countries have combated TB, less developed
nations struggle heavily with these infections.
South Africa is an example of one such coun-
try. TB is a severely dangerous public health is-
sue in South Africa. Approximately half a mil-
lion people developing the disease every year,
over half of which have pre-existing health con-
ditions such as HIV (K. Selain 3). Though ef-
fective treatment is available, and the country
is making considerable progress in combating
the disease, more could be done to control TB
in South Africa and other developing nations.

With all this in mind we focus our study on
South Africa and research how public health
measures, both at the national level and in-
ternational level, have impacted the spread of
TB. As well, we look into goals for the future
and how they can be achieved. To aid our
research, we first collect data of TB infection
in South Africa. We then develop a mathe-
matical model and determine parameters that
best fit the data. Developing a model helps
answer our biological question mathematically.
Specifically, we are interested in the equilibrium
points, what the values and when they are ap-
proximately reached. We also explore the shape
of the solution curves. Afterwards, we manipu-
late the parameters according to public health
policies and interpret the results biologically.

2 Base SIR Model

Many mathematical models of epidemics make
the premise that the population may be split
into discrete compartments. These compart-
ments are classified based on the current "sta-
tus" of the disease. The most known com-
partment model is the susceptible (S), infected
(I), and recovered (R), also known as the SIR

model. Susceptible individuals are defined to
have never been infected but are able to catch
the disease. Infected individuals have the dis-
ease and can spread it to susceptible individu-
als. After the infected period, individuals move
on to the Recovered compartment.

2.1 Assumptions

The compartments can be modeled according
to the following assumptions: the total pop-
ulation is closed and that encounters between
infected and susceptible individuals occur at a
rate proportional to their respective numbers
in the population. This rate of new infections
is defined as βIS, where β is a parameter for
infectivity. Infected individuals are assumed to
all be given the same treatment possible. This
treatment is also assumed to be the best avail-
able treatment. Individuals are assumed to re-
cover at a constant rate denoted by γ. We also
assume that once recovered, they have full im-
munity and cannot be infected again. Vaccines
and vaccinated individuals are assumed to not
exist. Other factors such as gender, age, pre-
existing health conditions and socioeconomic
status are assumed to not be compounding fac-
tors.

2.2 Model

S I R
βIS γI

The model can be turned into a scheme of Or-
dinary Differential Equations:

dS

dt
= −βIS

dI

dt
= βIS − γI

dR

dt
= γI

with initial conditions, S(0) = S0 > 0, I(0) =
I0 > 0, R(0) ≥ 0 and parameters defined
in Table 1. In this model S(t), I(t), R(t) are
the variables that describe the population size
with the function letter denoting the compart-
ment. t = 0 denotes the beginning of the epi-
demic. Note that the total population: N =
S(t) + I(t) + R(t). As this model is assumed
to be closed, we do not consider immigration or
emigration. Moreover, we don’t consider birth
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and natural death, assuming that all infections
end with recovery. Therefore the total popula-
tion size N is constant. In mathematical terms
this means N0 = S0 + I0 +R0.

Table 1: Table 1: Description of Parameters
used in the SIR model.

Parameter Description
β infection rate per year
γ recovery rate per year

2.3 Mathematical Analysis

We perform a qualitative analysis of the model
using the system of differential equations ob-
tained.
Suppose we have a system of differential equa-

tions: x′1 = f1 (x1, x2)
x′2 = f2 (x1, x2)

The x1-nullcline, n1, is the set of points
(x1, x2) such that x′1 = f (x1, x2) = 0 that is,
n1 := {(x1, x2) | f1 (x1, x2) = 0} . Similarly, the
x2-nullcline, n2 := {(x1, x2) | f2 (x1, x2) = 0}

Now consider the system of differential
equations for our SIR model. Since R(t) has
no dependency on S(t) or I(t) we can omit it
producing,(

S
I

)′
=

(
−βIS

βIS − γI

)
which is the same as,(

S
I

)′
=

(
−βI 0
βI −γ

)(
S
I

)
Evaluating for the nullclines we get, S′ =
0 =⇒ βIS = 0. This gives us S- nullclines
= {(S, I) | S = 0 or I = 0}(the S and I axes)
and I ′ = βIS − γI =⇒ βIS = γI =⇒ I-
nullclines = {(S, I) | I = 0 or S = γ

β} (I = 0

and the vertical line S = γ
β ).

The following observations can be made:

• We get a number of steady points on S+ :=
{(S, 0) | S ≥ 0}.

• From the model we get that
dS

dt
is always

decreasing and bounded below by 0, this
means S(t) ≤ S0

• For I ′ = βIS − γI we get,

– if S0 <
γ
β then I ′ < 0, but this means

I(t) strictly decreases from t = 0.
Also since S(t) ≤ S0 <

γ
β we get that

no epidemic can occur from this.

– if S0 > γ
β then I ′ > 0, I(t) strictly

increases from t = 0 to t = t′. This
also means S(t) > γ

β . From this we
get that an epidemic occurs.

To find the stability of each steady point
(S∗, 0), by linearization, let f = (f1, f2) such
that,

f1(S, I) = −βIS

f2(S, I) = βIS − γI

Taking the partial derivatives we get the Jaco-
bian matrix Jf ,

Jf (S, I) =

(
−βI −βS
βI βS − γ

)
with stability points,

Jf (S
∗, 0) =

(
0 −βS∗

0 βS∗ − γ

)
The eigenvalues of this matrix,

λ1,2 = λ2 − tr(Jf (S
∗, 0)) + det(Jf (S

∗, 0)) = 0

which gives us λ1 = 0 and λ2 = βS∗ − γ. The
first eigenvalue λ1 = 0 corresponds to the neu-
trally stable direction along the ray of steady
states. The second eigenvalue is positive if
S∗ > γ

β and negative otherwise. To construct a
phase portrait we write one unknown function
I as a function of another S. We can do so by
chain rule I = I(S(t)).

dI

dt
=

dI

dS
.
dS

dt

This gives us,

dI

dS
=

βIS − γI

−βIS
= −1 +

γ

βS

Since we are considering I as a function of S ,
integrating the above equation from S0 to S we
obtain,

I(S) =
γ

β
lnS − S + constant ,

where the constant is determined by the ini-
tial conditions. It then follows that there is a
unique solution curve connecting the equilib-
rium points in the interval γ/β < S < ∞ to
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one in the interval 0 < S < γ/β. This justi-
fies the observation as to why if S0 > γ

β then
I(t) strictly increases in the interval [0, t′). This
means I(t) increases till a value S = θ and
then it decreases to 0 past this values. In other
words, limt→∞ I(t) = 0, limt→∞ S(t) = C1 and
limt→∞R(t) = C2 where C1,2 are physical con-
stants.

2.4 Description of Data and Model
Fitting

With an understanding of the analytics behind
the model, we now plot and fit the data to
determine the parameters, β, and γ. Data
was collected from the World Health Organiza-
tions’ (WHO) Global Tuberculosis Programme
(World Health Organization). The database
we accessed presented data starting from 2000.
While TB data before 2000 exists, we choose
to use the data presented in the main database
to understand the modern-day trends. Every
year, members of the WHO submit tuberculosis
profiles which is then compiled together. These
profiles include data on estimated cases, detec-
tion rate and mortality rate. As well, many
data sets are divided into smaller groups such
as children, sex, and other health conditions.
Because of the abundance of data, we decided
to focus on the general case of new TB incidents
and did not look at specific cases. Data for new
TB incident data became the value for the in-
fected population with the values 2000 being
the initial condition. Although WHO has data
on treatment success rate, which could be used
to extrapolate the recovered population, we de-
cided against it, focusing on just the infected
population. This was to ensure that parameter
fitting would fit the infected population. How-
ever, we did use the treatment success rate one
time to determine the initial condition for re-
covered. The initial condition for susceptible
was then calculated by subtracting the infected
and recovered populations from the estimated
total population of 2000. This was to keep con-
sistent with the data.

Parameters were then determined using
MatLab. Ode45 was used to solve the differen-
tial equations and the function fminsearch was
used to determine the parameters. The value
of the parameters and the initial conditions
can be seen in Table 2.

Table 2: Values of Parameters and Initial
Conditions.

Parameters
Parameter/Initial
Condition

Value

β 2.47 × 10−8

γ 0.97
N 44967713
S(0) 44408623
I(0) 343000
R(0) 216090

Biologically, these parameters make sense as
β is inversely related to the size of the popula-
tion. The recovery rate is related to a individu-
als infectious period. This can last from a least
6 months (γ = 2) to the worse case scenario
of years. A recovery rate of 0.97 suggests that
an individual is infected for around 13 months.
Applying these values to our ODE system, we
plot the solution curves of the system of differ-
ential equations and also the phase plane.

Figure 1-2 are consistent with the analysis
determine prior. Figure 1 shows the solution
curves with the x-axis being the years. The In-
fected population increases until around x = 11
when it begins to decrease. This continues to
decrease until around x = 30 where the pop-
ulation of infected is very small. The suscep-
tible population steadily decreases from x = 0
until x = 30 where it begins to plateau. Con-
versely, the recovered population increases from
x = 0 until x = 30 where it also plateaus. The
patterns of these solutions curves suggest that
an epidemic occurs and will eventually end at
around x = 30. We can then infer that at x =
30, the equilibrium or steady state is reached.
The shape of the solution curve is also what
we expected with no notable remarks. Figure
2 shows the phase plane with the susceptible
population as the x-axis and the infected popu-
lation as the y-axis. The point is the initial con-
dition and produced a unique curve. Because
our initial condition for susceptible was greater
than γ

β , an epidemic occurred. This condition
also satisfies that λ2 > 0, making this region
unstable. This instability causes the popula-
tion to change, reaching Imax = 39271255 be-
fore decreasing to 0 and entering the stable re-
gion with λ1 = 0 While more can be extrapo-
lated from this model, we do not continue with
this model. We do not believe that it is ad-
equate in modelling TB in South Africa and
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Figure 1: Solution curve of SIR model with β = 2.47× 10−8 and γ = 0.97

Figure 2: Phase plane with the initial point (44408623,343000). The red vertical is the nullcline
γ
β = 39271255.

helps answer our biological question. One of
the main issues is that TB is one of the lead-
ing causes of death in South Africa. However,
a model assumption for SIR is that every in-
fected individual would recover. It also does not
consider the natural death rate of the suscep-

tible and recovered populations. Another issue
we had was with the closed population assump-
tion. While we already mentioned death, births
and the influx of individuals are also not consid-
ered. From the data, the total population rises
every year which contradicts the closed popula-
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tion assumption. We believe that the influx of
individuals is a major contributor that has al-
lowed for TB to survive as long as it has. These
two main factors are our motivation to produce
a different model to answer our biological ques-
tion.

3 Modified SIR Model

We now modify the SIR model to include the
influx of individuals and also the deaths due to
natural causes and TB. The definition of each
compartment, susceptible, infected and recov-
ered remain unchanged, however, additional ar-
rows are added to include the new parameters.

3.1 Assumptions

As we are building on the previous model, many
of the same assumptions hold. This includes,
encounters between infected and susceptible in-
dividuals occur at a rate proportional to their
respective numbers, infected individuals are as-
sumed to all be given the same treatment pos-
sible and that recovery occurs at a constant
rate. Vaccines are assumed to not exist and
other factors such as age, gender, pre-existing
health conditions and socioeconomic status are
not compounding factors. However, because we
now consider the influx and deaths of individ-
uals, this population is open. We assume that
the population increases by the same constant
every year, denoted by Λ. In terms of deaths,
we assume that natural death, denoted by δ,
to be inversely related to the average life ex-
pectancy of an individual. Matching with the
previous assumption, this life expectancy is as-
sumed to apply for all individuals regardless of
gender, socioeconomic status and pre-existing
health conditions. As well, since it is inversely
proportional, 0 < δ < 1. α is the parameter for
death due to TB which we again assume to be
exist between (0, 1). α and δ are also assumed
to be additive. Finally, we assume the Λ >> α
or δ to keep consistent with the biological in-
terpretation.

3.2 Model

S I R
Λ βIS

δS

γI

(δ + α)I δR

This modified model be represented as a system
of Ordinary Differential Equations with param-
eters as defined in Table 3:

dS

dt
= Λ− βIS − δS

dI

dt
= βIS − (δ + α+ γ)I

dR

dt
= γI − δR

Table 3: Description of Parameters for the
modified SIR model.

Parameters
Parameters Description
β infection rate per year
γ recovery rate per year
α TB death rate per year
δ natural death rate per

year
Λ individual influx

3.3 Mathematical Analysis

Consider the system of ODE, to find the steady
points by linearization let f = (f1, f2, f3) where

f1(S, I,R) = Λ− βIS − δS

f2(S, I,R) = βIS − (δ + α+ γ)I

f3(S, T,R) = γI − δR

Adding all three equations together we get,
N ′ = Λ−δN−αI, since in comparison to Λ, the
term αI is significantly smaller, we can ignore
it and the equation becomes N ′ = Λ−δN . It is
easy to see that the solution to the differential
equation is

N(t) = N0e
−δt +

Λ

δ

(
1− e−δt

)
Therefore as t → ∞, N → Λ

δ and this is called
the limit population size.
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3.3.1 R0 and its Derivation

We now introduce the parameter R0. Also
known the basic reproduction number, R0 mea-
sures how transmissible a disease is in a pop-
ulation. The parameter is not a fixed value
for all diseases but dependent on population
size and model parameters. The larger the
value of R0, the more likely that a disease can
spread from host to susceptible individuals. As
such, if R0 < 1, we say that a disease is un-
able to spread effectively, producing less than
1 secondary case (Milligan et al. 311). There-
fore, the population of infected individuals will
slowly deplete on its own. Conversely if R0 > 1,
the disease is able to spread effectively, produc-
ing more than 1 secondary case, causing an epi-
demic.

We know that R0 is a dimensionless quan-
tity and be numerically solved by non-
dimensionalizing the system. Consider f1, f2.
Since δ, α, γ have units (year−1 let τ = (α+γ+
δ)t, (t time). Then τ is a dimensionless quan-
tity. By this change I(t) = I( τ

α+γ+δ ) = Î(τ)

and S(t) = Ŝ(τ). By the chain rule we get,

dŜ

dτ
=

1

α+ γ + δ

dS

dt
,

dÎ

dτ
=

1

α+ γ + δ

dI

dt

We rescale Ŝ, Î variables with limiting popu-

lation size. Therefore we get s(t) =
δŜ

Λ
and

i(t) =
δŜ

Λ
, and these two are dimensionless

quantities. Consider,

s(t) =
δŜ

Λ
=

δ(Λ− βIS − δS)

Λ(α+ γ + δ)

We get
s′ = ρ(1− s)−R0si

i′ = (R0s− 1) i

such that

ρ =
δ

(α+ γ + δ)
, R0 =

Λβ

δ(α+ γ + δ)

where R0 is our reproduction number.

3.3.2 Phase-plane analysis

To get the steady points of the system let
(f1, f2, f3) = (0, 0, 0). Solving this we get the

following steady points,
When I = 0 (Disease free equilibrium DFE),

(S∗, I∗, R∗) =

(
Λ

δ
, 0, 0

)

When I ̸= 0 (Endemic equilibrium EE),

(S∗, I∗, R∗) =(
α+ γ + δ

β
,

Λ

α+ γ + δ
− δ

β
,
γ

δ

(
Λ

α+ γ + δ
− δ

β

))
To get the eigenvalues, consider the Jaco-
bian, Jf

Jf =

−βI − δ −βS 0
βI βS − (α+ δ + γ) 0
0 γ −δ


The stability analysis of the DFE is,

Jf

(
Λ

δ
, 0, 0

)
=

−δ −β Λ
δ 0

0 β Λ
δ − (α+ δ + γ) 0

0 γ −δ


with eigenvalues,

λ1 = −δ

λ2 = β
Λ

δ
− (α+ δ + γ)

λ3 = −δ

We get that λ1,3 is always negative (as δ > 0)
always. Now rearranging λ2 we get ,

λ2 = (α+ δ + γ)

(
Λβ

δ(α+ δ + γ)
− 1

)
which is just,

λ2 = (α+ δ + γ)(R0 − 1)

When R0 < 1, all three eigenvalues are neg-
ative and the DFE acts as a sink which is stable.

Now consider the EE,

Jf

(
α+ γ + δ

β
,

Λ

α+ γ + δ
− δ

β
,
γ

δ

(
Λ

α+ γ + δ
− δ

β

))
=


−β

(
Λ

α+γ+δ −
δ
β

)
− δ (α+ δ + γ) 0

β
(

Λ
α+γ+δ −

δ
β

)
0 0

0 γ −δ


The eigenvalues are,
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λ1 =
−δR0 −

√
(δR0)2 − 4δ(α+ δ + γ)(R0 − 1)

2

λ2 =
−δR0 +

√
(δR0)2 − 4δ(α+ δ + γ)(R0 − 1)

2
λ3 = −δ

If (δR0)
2 < 4δ(α+ δ + γ)(R0 − 1) then we ob-

tain complex conjugate eigenvalues. At some
value called the bifurcation point we see that
the eigenvalues are strictly imaginary. This ob-
servation is an indicator for Hopf bifurcation
and that. If R0 > that the bifurcation value, we
see that two branches of solutions exist. There-
fore, we should expect that a limits of the solu-
tions approach a stable periodic orbit.

3.4 Description of Data and Model
Fitting

As in section 2.4, we now fit the data to our new
model to determine the parameters and see how
the model aligns with our analysis.

Many of the same controls were kept such as
using the data starting from 2000, focusing on
general new cases, and not looking at specific
demographics, furthermore we kept the same
initial conditions. However, we now consider
the changing total population size and deaths,
both natural and induced by TB. All parame-
ter values and initial conditions can be found
on Table 4. Unlike before, not all parameters
needed to be fitted, and some were assumed us-
ing general statistics.
δ was assumed to be the inverse of South

Africa’s average life expectancy. From the
World Bank, life expectancy varied from 2000
to 2020 (The World Bank). Taking the average
of these values we determined that the average
life expectancy of South Africa was 58 years
old. Therefore δ = 1

58 .
α was determined by looking at the WHO

data. The database has data on estimated mor-
tality due to TB, dividing deaths per year by
the number infected of the same year, we get
the rate of deaths from the Infected population.
However, from our model this was assumed to
be δ + α. Therefore, by subtracting δ we ac-
quired α.

Λ was fitted by setting I(0) and R(0) to 0.
This meant that S(t) = N(t) and so the popu-
lation was allowed to grow without disturbance.
Using Matlab and the function fminsearch, this
growth was determined and equated to Λ.

Finally, β and γ were determined similarly as
before. Using the initial conditions to solve the
system of ODE’s and the Matlab function fmin-
search, the infected population was fitted with
parameters that minimized the sum of square
errors.

Table 4: Values of Parameters and Initial Con-
ditions.

Parameters
Parameter/Initial
Condition

Value

β 4.27 × 10−8

γ 1.54
Λ 1540918.33
δ 0.017
α 0.24
S(0) 44408623
I(0) 343000
R(0) 216090

Biologically, these values make sense. β is
once again inversely related to the total popu-
lation size. γ suggests that recover takes around
8 months. As well, the influx of individuals is
much greater than the proportion of people that
die so the total population will increase.

Figure 3-5 are consistent with the mathemat-
ical analysis. Figure 3 shows the long term solu-
tions of population compartments. The x-axis
is once again time in years. The top line is the
total population. From our analysis we found
that limt→∞N(t) = Λ

δ = 90642254. While our
curve appears to not reach this value, the curve
of N(t) considers αI while the mathematical
analysis does not. Overall, the difference is
minimal and does not impact the quality of the
curve and our interpretation.

Answering mathematical questions, we ob-
serve the patterns of the solution curves. Un-
like before where the solutions followed a more
linear pattern before plateauing, we see in this
model that the solution oscillate before reach-
ing some limit. A closer inspection of this limit,
as seen in Figure 4, shows that it too oscil-
lates. From Figure 3 and Figure 4, we see that
the limit for all the solution curves converge
to a positive constant which is the EE. This
means that our R0 > 1. The oscillating pat-
tern also matches with the stability and Hopf
bifurcation. Since the eigenvalues have nega-
tive real parts they will converge to the second
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Figure 3: Solution curve of our modified SIR model with β = 4.27×10−8, γ = 1.54, Λ = 1540918,
δ = 0.017 and α = 0.24.

steady state. However, from Hopf bifurcation,
as R0 > 1 > 0, this point loses stability and cre-
ates two stable periodic orbits. Interestingly,
this stability takes a very long to be reached,
occurring well beyond our lifetime. This sug-
gests that TB will continue to have an affect on
South Africa for a long time.

3.4.1 Modifying Parameters to Answer
Biological Question

With a better model that addresses the two
main issues we had and an understanding of
the dynamics of TB, we explore public health
measures in place to see their effect on TB. We
also look into future goals and how changing
parameters to align with the goals affects the
population sizes. South Africa has taken many
strides in combating TB. In 2007-2011, South
Africa released a National Strategic Plan (NSP)
to combat HIV and AIDS (Kapp 1590). While
the focus was on HIV and AIDS, many TB pa-
tients also have HIV so the measures in place
are still relevant. Some of the main goals in-
cluded increased voluntary testing and coun-
selling to combat stigma and increasing human
resources. This is seen in the data as during this
time period infected population grew as peo-

ple got tested. In 2012-2016, following the suc-
cess of the previous NSP, improvements were
made to testing and overall better treatment
and medication (Hopkins et al. 1). Better test-
ing allows for early diagnosis and earlier access
to medication. Because of this we are interested
to see what would have happened if the 2012-
2016 measures were not implemented. What
would have happened to the cases and limits?
Keeping all parameter values the same except
for β, we refit using 2000-2010 infected data as
this is when infected cases increased.

Figure 5 simulates this scenario. The infected
population continues to grow past 2010 when
in the original data it begins to decrease. The
susceptible and recovered populations have also
changed with the susceptible population de-
creasing and the recovering increasing. Math-
ematically, this result shows that limits have
changed for all compartments. The infected
and recovered population limit increases while
the susceptible decreases. As well, the curves
still approach and oscillate around the equilib-
rium points as t −→ ∞. Biologically, this is sce-
nario may be very harmful to South Africa. A
large number of infections in a relatively short
period of time may put a significant burden on
the health care system. More people may not
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Figure 4: Solution curve of just the infected population with the same parameters as Figure 3.

Figure 5: Simulation of TB growth in South Africa before 2012 measures using the modified SIR
model. The blue line has no parameter modification. The orange line is when β = 4.944× 10−8,
other parameter values were kept the same. This value was fitted using infected data from 2000
to 2010 in Matlab. he initial condition for the simulation is (S10, I10, R10) = (42043181, 701326,
8047870).

have access to adequate medication or medica-
tion may be in short amount. One could also
infer that more deaths would have occurred.

Therefore, the measures input in 2012-2016 are
very beneficial as they helped bring TB infec-
tion rates to a manageable level. This also
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Figure 6: Simulations of the modified SIR model using the goals outlined in the World Health
Organization. The solid blue line has no modification to the parameters. The orange dashed
line is when β is reduced by 10% (β = 3.8× 10−8). The yellow dash dotted line is when α =
0.05. The purple dotted line is when both parameters are modified. The initial condition for the
simulations are (S20, I20, R20) = (40571098, 397766, 14716652).

.

shows the importance of early diagnosis lead-
ing to early access to improved treatment.

Internationally, we look at goals WHO has
laid out. In their publication, The End
TB Strategy, they list out targets they want
to achieve (World Health Organization, "End
TB"). Remarkable targets include decreasing
the percentage of people that die from TB to
5% in 2025 from 15% in 2015 and reduce the
incidence rate by 10% in 2025 from 2% in 2015.
Again, we simulate these scenarios keeping ev-
ery parameter constant and modifying α and
β respectively. A simulation is also done when
both parameters are changed. Because we now
simulate future events, we change the initial
condition to when t = 20.

All scenarios produce differing results. When
β is reduced by 10%, we see that the suscepti-
ble population remains larger. Since less peo-
ple overall are being infected, we see that the
infected and recovered populations are smaller.
This results in the infected and recovered pop-

ulation approaching smaller limits and the sus-
ceptible approaching a larger limit compared to
the when no parameters were changed. When
α = 0.05, we see that the susceptible popu-
lation actually decreases. This is because more
people are infected and surviving, passing along
the disease to others. However, because less
people are dying we see that the recovered
population increases. Therefore, the recovered
population approaches a larger limit while the
susceptible and infected population approach
smaller limits. In the case when both modi-
fications are made, we see that solution is very
similar to when no modifications to parame-
ters are made. With less people dying there
are more people recovering but also more peo-
ple that can infect others. However, since the
β was also reduced the susceptible population
does not change as drastically compared to the
other two scenarios. What these results mean
for WHO is that in order to effectively con-
trol TB both measures need to be implemented.
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One is not good enough and may actually in-
crease the burden on the countries. Interest-
ingly, while WHO document title suggests that
TB can be eradicated, from all the simulations
and graphs we see that it not possibly. The
constantly changing population size will always
provide a host for TB. Therefore, controlling
TB to a manageable is a more realistic goal that
WHO should focus on.

4 Discussion and Conclusion

While we ultimately found our study to be help-
ful in modelling TB and answering our biolog-
ical question, there were some factors we did
not consider. These factors are directly related
to our model assumptions. As mentioned, vac-
cines was one measure we did not consider. A
vaccinated person can be considered immune to
the disease which reduces the susceptible pop-
ulation and decreasing the overall transmission
rate. In terms of our model, this would be an-
other arrow from the susceptible population to
the recovered population. Another factor we
did not consider was preexisting health condi-
tions. Mentioned in South Africa’s NSP, HIV
and AIDS are very apparent in South Africa.
With a weakened immune system, individual
treatment may be longer or not as effective.
The database we used had data on this but
we ultimately choose not to use it. Should we
redo the research and look at specific case that
include HIV and AIDS, we may see different
results. Lastly, the rising number of TB cases
that are drug resistant will prove to be a prob-
lem. We assume that the treatment given to
all individuals will be the same and is of the
best quality. However, if TB has mutated to be
resistant to these medications, the number of
deaths may increase or the period of infection
will be longer. This would then require further
research into the new variants and the creation
of new treatments drugs which may be costly.

Ultimately, we found that mathematical
modelling and analysis helped answer our bi-
ological question. By first deriving a model
that considered the influx and deaths of indi-
viduals, we were able to better understand how
TB has been able to survive so long in South
Africa. The solution curves show that because
of an overall increasing population, there are
more susceptible people that can be infected.
As the infection spreads and increases the in-

fected population, the susceptible population
decreases until it reaches a local minimum and
then increases again. This produces a wave
pattern showing that TB cannot truly be elimi-
nated but rather experiences periods of low and
high infections. This understanding was essen-
tial before we could modify the parameters and
look into how public health measures have im-
pacted TB spread. National measures as seen
in South Africa have shown to be very effective.
While more testing leads to a larger infected
population, it also allows for infected people
to begin treatment early. Without improve-
ments to TB treatment, simulations show that
more people become infected in a short period
of time which can negatively impact the quality
of health care. On the international level, we
see that both decreasing infection contacts and
decreasing TB deaths is essential to keep TB
controlled. If only one target is met, the infec-
tion cases actually rises which defeats the pur-
pose of the goals. These results further empha-
sis that TB can never be truly eradicated de-
spite the WHO document title. Overall, while
the model is not perfect, it has provided great
insight into the dynamics of TB and helps ex-
plain how public health measure have helped
and will continue to help in controlling TB.
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5 Appendix

Code for our the modified SIR model

1 %Creating the modified SIR model
2 function f =newMSIRmodel(t,y,par)
3 % Label the parameters and variables
4 beta = par(1);
5 gamma = par(2);
6 S=y(1);
7 I=y(2);
8 R=y(3);
9 N=S+I+R;

10 % Input the differential equations
11 Sdot =1540918.33 - beta*I*S -0.0172*S;
12 Idot=beta*I*S-gamma*I -0.257*I;
13 Rdot=gamma*I -0.0172*R;
14 f =[Sdot Idot Rdot]’;
15 end
16

17 %Solving the modified SIR model
18 function sol=newMSIRSol(par ,IC ,t)
19 %disp(num2str(par))
20 DeHandle=@(t,y) newMSIRmodel(t,y,par);
21 [~, Y]=ode45(DeHandle ,t,IC);
22 sol=Y’;
23 end
24

25 %Determining the parameters for the modified SIR model
26

27 InfP = [343000 395000 448000 499000 544000 581000 608000 625000 634000
636000 632000 624000 614000 593000 582000 547000 452000 421000
391000 360000];

28 Total = [44967713 45571272 46150913 46719203 47291610 47880595 48489464
49119766 49779472 50477013 51216967 52003759 52832659 53687125
54544184 55386369 56207649 57009751 57792520 58558267];

29

30 MSIRData = [InfP]
31

32 t = [0:9];
33

34 IC = [44624713 , 343000 , 216090]
35

36 newMSIRparSol = @(par ,t) [0 1 0]* newMSIRSol ([par(1) par(2)], IC, t);
37

38 SumSquareSIR = @(par) sum(sum(( newMSIRparSol(par ,t)-MSIRData).^2));
39

40 [SIRtheta , fval , exitflag] = fminsearch(SumSquareSIR , [1e-7; 1.67]);
41 MSIRsol=newMSIRparSol(SIRtheta , t)
42

43 figure ;
44 scatter(t,MSIRData ,’.’ );
45 hold on;
46 plot(t,MSIRsol ,’--’);
47 hold off
48

49 %Plotting the modified SIR model
50 function Msir (beta , gamma) %Msir (4.27e-08, 1.54)
51

52

53 format longG
54 %close all
55

56 % x(1) = S, x(2) = I, x(3) = R
57
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58 odesys = @(t,x) [1540918.33 - beta*x(2)*x(1) -0.0172*x(1); (beta*x(2)*x(1)-gamma*x
(2) -0.257*x(2)); gamma*x(2) -0.0172*x(3)];

59 x0 = [42043181 701326 8047870]; % Initial Conditions
60 tspan = [10 100]; % Time Of Integration
61 [t, x] = ode45(odesys , tspan , x0); % Integrate
62

63

64 %SusP = [44408623 44719232 44941233 45124193 45298000 45449095 45605364
45774916 45962802 46225863 46634857 46949169 47315289 47728215
48142314 48576429 49122069 49631001 50166160 50678507];

65 InfP = [343000 395000 448000 499000 544000 581000 608000 625000 634000
636000 632000 624000 614000 593000 582000 547000 452000 421000
391000 360000];

66 %RecP = [216090 457040 761680 1096010 1449610 1850500 2276100 2719850 3182670
3615150 3950110 4430590 4903370 5365910 5819870 6262940 6633580 6957750
7235360 7519760];

67 Total = [44967713 45571272 46150913 46719203 47291610 47880595 48489464
49119766 49779472 50477013 51216967 52003759 52832659 53687125
54544184 55386369 56207649 57009751 57792520 58558267];

68

69 hold on
70 subplot (2,2,1)
71 plot(t, x(:,1), ’LineWidth ’,2, ’LineStyle ’,’-’)
72 title(’Susceptible Popluation ’)
73 hold off
74

75 hold on
76 subplot (2,2,[3 4])
77 plot(t, x(:,2), ’LineWidth ’,2, ’LineStyle ’,’-’)
78 title(’Infected Population ’)
79 hold off
80

81 hold on
82 subplot (2,2,2)
83 plot(t, x(:,3), ’LineWidth ’,2, ’LineStyle ’,’-’)
84 title(’Recovered Population ’)
85 hold off
86

87 plot(t, x)
88 plot3(x(:,1),x(:,2),x(:,3))
89

90

91 %tP = [0:19]
92 %scatter(tP, SusP , ’blue ’)
93 %scatter(tP, InfP , ’or ’)
94 %scatter(tP, Total , "magenta ")
95 %legend(’I(t)’, ’Infected Population ’, ’Location ’, ’NE ’)
96

97 end

Code for the base SIR model

1 %Setting up the system
2 function f =newSIRmodel(t,y,par)
3 % Label the parameters and variables
4 lambda = par(1);
5 gamma = par(2);
6 S=y(1);
7 I=y(2);
8 R=y(3);
9 N=S+I+R;

10 % Input the differential equations
11 Sdot=-lambda*I*S;
12 Idot=lambda*I*S-gamma*I;
13 Rdot=gamma*I;
14 f =[Sdot Idot Rdot]’;
15 end
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17 %Solving the system
18 function sol=newSIRSol(par ,IC ,t)
19 %disp(num2str(par))
20 DeHandle=@(t,y) newSIRmodel(t,y,par);
21 [~, Y]=ode45(DeHandle ,t,IC);
22 sol=Y’;
23 end
24

25 %Fitting for parameters
26

27 InfP = [343000 395000 448000 499000 544000 581000 608000 625000 634000
636000 632000 624000 614000 593000 582000 547000 452000 421000
391000 360000];

28

29

30 SIRData = [InfP]
31

32 t = [0:9];
33

34 IC = [44624713 , 343000 , 216090]
35

36 newSIRparSol = @(par ,t) [0 1 0]* newSIRSol ([par(1) par (2)], IC , t);
37

38 SumSquareSIR = @(par) sum(sum(( newSIRparSol(par ,t)-SIRData).^2));
39

40 [SIRtheta , fval , exitflag] = fminsearch(SumSquareSIR , [1e-7; 1.67]);
41 SIRsol=newSIRparSol(SIRtheta , t)
42

43 figure ;
44 scatter(t,SIRData ,’.’ );
45 hold on;
46 plot(t,SIRsol ,’--’);
47 hold off
48

49 %Plotting
50 function sir (beta , gamma) %sir (2.46961008565369e -08 ,0.969706230691677)
51

52 close all
53

54 odesys = @(t,x) [(-beta.*x(1).*x(2)); (beta.*x(1).*x(2)-gamma .*x(2)); gamma .*x
(2)];

55 x0 = [44408623; 343000; 216090]; % Initial Conditions
56 tspan = [0 50]; % Time Of Integration
57 [t, x] = ode45(odesys , tspan , x0); % Integrate
58

59 tP = [0: 19]
60 %SusP = [44408623 44115673 43758033 43372703 42974103 42536213 42083613

41622863 41151043 40716563 40385603 39913123 39450343 39008803
38565843 38157773 37882133 37588963 37341353 37087953];

61 InfP = [343000 395000 448000 499000 544000 581000 608000 625000 634000
636000 632000 624000 614000 593000 582000 547000 452000 421000
391000 360000];

62 %RecP = [216090 457040 761680 1096010 1449610 1850500 2276100 2719850 3182670
3615150 3950110 4430590 4903370 5365910 5819870 6262940 6633580 6957750
7235360 7519760];

63 hold on
64

65

66 plot(t, x)
67 grid
68

69 %scatter(tP, SusP , ’blue ’)
70 scatter(tP, InfP , ’or’)
71 %scatter(tP, RecP , [’black ’])
72
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73 legend(’S(t)’, ’I(t)’, ’R(t)’, ’Infected Population ’, ’Location ’, ’NE’)
74 xlabel(’t (years)’)
75 ylabel(’Population Size’)
76 hold off
77

78 end
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