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The Poisson summation formula (PSF) is a mathematical technique that relates the sum of a function over the integers
to its Fourier transform. It allows one to transfer information between the continuous and discrete domains and has
important applications in fields such as signal processing, complex analysis and number theory. The formula was first
discovered by the French mathematician Siméon Poisson [1] in the early 19th century and is sometimes called Poisson
resummation. To introduce and prove the PSF we introduce the following background information and preliminaries.

1. Background Information

1.1. n-Torus Tn. The n-torus or n-dimensional torus extends the idea of a torus to higher dimensions. The common
torus is a two-dimensional surface that can be created by gluing the opposing corners of a rectangular piece of paper
to create a tube. The resulting surface has a hole in the middle and can be visualized as a doughnut or a bagel. The
n-torus Tn is the cube [0, 1]n with opposite sides identified. Specifically, we consider two points in the cube to be
identified if they differ by an integer in every coordinate. Now we note that functions on Tn are functions f on Rn

that satisfy f(x + m) = f(x) for all x ∈ Rn and m ∈ Zn. Such functions are called 1-periodic in every coordinate.
This is true because of the way the torus is constructed - by identifying points in Rn that differ by an integer vector.
As a result, these functions repeat themselves every time we translate by an integer vector in any direction.

1.2. Lebesgue Space Lp(Rn). The Lp spaces are used to measure the size of a function. Intuitively, the Lp spaces
provide a was to measure how spreadout a function is, with different values of p corresponding to different ways of
measuring spread. For instance, the L1 space is used to measure the absolute spread of a function, the L2 space is
used to measure the squared spread of a function.

Definition 1.1. For 0 < p < ∞, Lp(·) is defined as the space of all f defined on Rn, such that ∥f∥Lp(Rn) :=(∫
Rn |f(x)|pdx

)1/p and ∥f∥Lp(Tn) :=
(∫

Tn |f(x)|pdx
)1/p are finite.

Note. For any f ∈ L1 (Tn) , then
∫
Tn f(t)dt =

∫
[0,1]n

f(t)dt =
∫
[−1/2,1/2]n

f(t)dt .

1.3. Fourier Series and Transform. The Fourier series is a way of representing a periodic function as a sum of sine
and cosine functions with different amplitudes and frequencies. This enables us to express a large range of functions
in terms of simple trigonometric functions. On the other hand, the Fourier Transform is a powerful tool that helps
us convert a function f(x) defined in the (usually time) x ∈ R domain to another function f̂(ξ) in the (frequency) ξ-
domain which describes the frequency spectrum of the function f which is typically represented as a graph showing
the amplitude or magnitude of each frequency component as a function of frequency. The Fourier series and Fourier
transform are related in that the Fourier transform can be thought of as the extension of the Fourier series to non-
periodic signals. Moreover, a periodic signal’s Fourier series coefficients can be calculated using the Fourier transform,
and vice versa. These have numerous applications in signal processing, harmonic analysis, and differential equations.

Definition 1.2. A trigonometric series fs(t) on Tn is an expression of the form: fs(t) =
∑

k∈Zn cke
ik·t, t ∈ Rn, ck ∈ C.

Definition 1.3. If the set {k ∈ Zn : ck ̸= 0} is finite, then it is called a trigonometric polynomial and f(t) =∑
k∈Zn cke

ik·t. In view of the orthonormality of the exponentials we have ∀k ∈ Zn, ck =
∫
Tn f(t)e−ik·tdt, k ∈

Zn ⇐⇒ ck = f̂(k) (1.5).

Definition 1.4. The Fourier series of a function f ∈ L1 (Tn) is defined as
∑

k∈Zn f̂(k)e2πik·t, t ∈ Rn where the k th
Fourier coefficient f̂(k) of f is f̂(k) =

∫
Tn f(t)e−2πik·tdt, k ∈ Zn.

Definition 1.5. The Fourier transform of a function f ∈ L1 (Rn) is defined as f̂(ξ) :=
∫
Rn f(x)e−2πix·ξdx, ξ ∈ Rn

Definition 1.6. The inverse Fourier transform of a function f ∈ L1 (Rn) is defined as f̌(x) :=
∫
Rn f(ξ)e2πiξ·xdξ, x ∈ Rn

1.4. Fejér Kernel. The Fejér Kernel is a family of functions that are used in mathematical analysis and signal
processing to approximate other functions. It is named after the Hungarian mathematician Lipót Fejér [2], who
introduced it in the early 20th century. In the context of Fourier analysis, a kernel is often used to smooth or
regularize a function. The Fejér kernel is called a kernel because it is usually convoluted with a function to produce
a smoothed version of that function. The Fejér kernel is used to approximate a function f(x) on the torus by taking
a linear combination of f convoluted with the Fejér kernel. Here we define convolution for two functions to be
(f ∗ g)(x) := 1

2π

∫
Rn f(x− t)g(t)dt.

Definition 1.7. The Fejér Kernel (Fñ(t)) is defined as Fñ(t) =
∑

|k|≤ñ−1

(
1− |k|

ñ

)
eikt and in n dimensions it is

defined to be Fn
ñ (t1, . . . , tn) := Fñ (t1) · · ·Fñ (tn) . We notice that it is a trigonometric polynomial as it is a finite sum.

Now that we have stated all the necessary background information we now state the theorem and give a proof for it.
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2. Poisson summation formula

The motivation for the PSF comes from the Fourier series, which expresses a periodic function as a sum of sinusoidal
functions. The Fourier transform is a generalization of the Fourier series to non-periodic functions. The PSF relates
the Fourier transform of a function on the real line to its values on the integers. It states that if a function and its
Fourier transform satisfy certain conditions, then the sum of the values of the function on the integers is equal to the
sum of the values of its Fourier transforms on the integers. This result is remarkable because it relates a continuous
function on the real line to a discrete sequence of values on the integers. The PSF provides a way to calculate the
values of a function at integer points using its Fourier transform, which may be easier to compute or manipulate.

Theorem 2.1. (PSF) A.5.7 in Han[3], 3.2.8 in Grafakos[4] Suppose that f, f̂ ∈ L1 (Rn)∩C (Rn) satisfy |f(x)| ≤ C(1+

|x|)−n−ε, ∀x ∈ Rn, for some C, ε > 0 and whose Fourier transform f̂ restricted on Zn satisfies
∑

m∈Zn |f̂(m)| < ∞.
Then we have the relation, ∑

k∈Zn

f̂(k)e2πik·x =
∑
k∈Zn

f(x+ k), ∀x ∈ Rn

Before we give a proof of the PSF we have to state some preliminaries.

3. Preliminaries

Theorem 3.1. (Convolution Theorem) A.3.1 in [3], 3.1.2 in [4] If f ∈ Lp (Tn) with 1 ≤ p ≤ ∞ and g ∈ L1 (Tn),
then [f ∗ g](x) is well defined for a.e x ∈ Rn, f ∗ g ∈ Lp (Tn) and f̂ ∗ g(k) = f̂(k)ĝ(k) for all k ∈ Zn.

Proof : We have∫
[−1/2,1/2]n

∫
[−1/2,1/2]n

|f(t− s)g(s)|dtds =
∫
[−1/2,1/2]n

|f(t)|dt
∫
[−1/2,1/2]n

|g(s)|ds = ∥f∥1∥g∥1 ≤ ∥f∥p∥g∥1 <∞

Since f ∈ Lp(Tn) and g ∈ L1(T), we conclude that f(t − s)g(s) ∈ L1

(
[−1/2, 1/2]2n

)
. By this fact and by Fubini’s

Theorem we can interchange the order of integration,

f̂ ∗ g(k) =
∫
[−1/2,1/2]n

∫
[−1/2,1/2]n

f(t− s)g(s)e−2πik·tdsdt =

∫
[−1/2,1/2]n

∫
[−1/2,1/2]n

f(t− s)e−2πik·(t−s)g(s)e−2πik·sdtds

=

∫
[−1/2,1/2]n

f(t)e−2πik·tdt

(∫
[−1/2,1/2]n

g(s)e−2πik·sds

)
= f̂(k)ĝ(k), ∀k ∈ Zn. □

Note. Using [3.1] on a function f ∈ L1 (Rn) and Fñ(t) gives us f ∗ Fñ(t) =
∑ñ−1

j=1−ñ

(
1− |j|

˜̃n

)
f̂(j)eijt.

Theorem 3.2. (Fejér) A.3.2 in [3], 1.2.19 in [4] If f ∈ Lp (Tn) with 1 ≤ p ≤ ∞ then limñ→∞ ∥f ∗ Fn
ñ − f∥p = 0.

As we don’t provide a proof for the above theorem we just give a brief note about the theorem. It says that for
f ∈ Lp(Tn) with 1 ≤ p ≤ ∞, the sequence of partial Fourier sums of f converges to f in the Lp norm as the number
of terms in the sum goes to infinity. The theorem ensures that the approximation error for say approximating a signal
can be made arbitrarily small by choosing a sufficiently large number of terms in the partial Fourier sum.

Using the above results we get the following corollaries and propositions:

Corollary. (Weierstrass approximation theorem) A.3.2 in [3], 1.2.19 in [4] The set of trigonometric polynomials
is dense in Lp (Tn) for 1 ≤ p <∞.

Proof : Given f in Lp (Tn) for 1 ≤ p < ∞, consider f ∗ Fn
ñ . From the above note, f ∗ Fn

ñ is also a trigonometric
polynomial. From (3.2]) , f ∗ Fn

ñ converges to f in Lp as ñ→∞ □.

The Weierstrass approximation theorem is motivated by the need to approximate continuous functions with sim-
pler functions like polynomial functions that are easier to work with. This has various uses in numerical methods like
polynomial interpolation, numerical integration and areas such as functional analysis and signal and image processing.

Corollary. A.3.4 in [3], 3.2.4 in [4] Let f, g ∈ L1 (Tn). If f̂(k) = ĝ(k) for all k ∈ Zn, then f(t) = g(t) a.e. t ∈ Rn.

Proof : Let h = f − g. Then ĥ(k) = 0 for all k ∈ Zn. Therefore, h ∗ Fn
ñ = 0 for all ñ ∈ N. By (3.2]) , h =

limñ→∞ h ∗ Fn
ñ = 0 in L1 (Tn). Hence, h = 0 and f = g a.e. p <∞. □.

Proposition 3.3. (Fourier inversion) 3.2.5 in [4] Suppose that f ∈ L1 (Tn) and that
∑

m∈Zn |f̂(m)| < ∞. Then
f(x) =

∑
m∈Zn f̂(m)e2πim·x a.e., and therefore f is almost everywhere equal to a continuous function.

Proof : By definition, both functions are well-defined and have the same fourier coefficients. Therefore, they must be
almost everywhere equal by the above corollary. Also the function of the right is continuous everywhere. □

Remark. If f , f̂ are in L1 (Rn), then f(x) =
∫
Rn f̂(ξ)e2πiξ·xdξ, a.e. x ∈ Rn. Therefore, both f, f̂ ∈ L1 (Rn)∩C0 (Rn).

The Fourier Inversion formula shows that the original function can be recovered from its Fourier transform by the
inverse Fourier transform formula. Now, using the above results we are ready to provide a detailed proof of the PSF.
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4. Proof of PSF

Proof : We follow the proof 3.2.8 in [4] but add and justify any necessary details. Define a function fper (·) on Tn,
fper (x) =

∑
k∈Zn f(x+k). This is clearly 1- periodic as fper (x+1) =

∑
k∈Zn f(x+k+1) =

∑
k̃∈Zn f(x+k̃) = fper (x)

where k̃ = k + 1. By the assumption that |f(x)| ≤ C(1 + |x|)−n−ε, ∀x ∈ Rn, the above series converges absolutely
and uniformly. Hence, fper ∈ C0 (Tn) ⊂ L1 (Tn) . In fact we justify that ∥fper∥L1([0,1]n) = ∥f∥L1(Rn).

∥fper∥L1([0,1]n) =

∫
Tn

∣∣∣∣∣∑
k∈Zn

f(x+ k)

∣∣∣∣∣ dx ≤
∫
Tn

∑
k∈Zn

|f(x+ k)| dx =
∑
k∈Zn

∫
Tn

|f(x+ k)| dx =
∑
k∈Zn

∫
[− 1

2 ,
1
2 ]

n−k

|f(x)|

which is equal to
∫
Rn |f(x)|dx = ∥f∥L1(Rn). The other direction is similar by using the roles of fper and f reversed.

Now we prove that the sequence of the Fourier coefficients of fper equals to the restriction of the Fourier transform of
f on Zn. This follows from :

f̂per(m) =

∫
Tn

∑
k∈Zn

f(x+ k)e−2πim·xdx =
∑
k∈Zn

∫
Tn

f(x+ k)e−2πim·xdx =
∑
k∈Zn

∫
[− 1

2 ,
1
2 ]

n−k

f(x)e−2πim·xdx

which is equal to
∫
Rn f(x)e−2πim·xdx = f̂(m) where x ← x + k. Now we justify the interchange of sum and integral

in the above proofs. For any x ∈ Tn = [0, 1]n, we note that 0 ≤ |x| ≤
√
n as |x| := (|x1|2 + · · ·+ |xn|2)1/2 for x ∈ Tn.

Therefore, by |f(x)| ≤ C(1 + |x|)−n−ε, ∀x ∈ Rn, and by the Weierstrass M -test of uniform convergence of series,

fper (x) =
∑
k∈Zn

f(x+ k) ≤
∑
k∈Zn

1

(1 + |k + x|)n+ε
≤
∑
k∈Zn

(1 +
√
n)n+ε

(1 +
√
n+ |k + x|)n+ε

≤
∑
k∈Zn

Cn,ε

(1 + |k|)n+ε
<∞,

where we used |k+x| ≥ |k|−|x| ≥ |k|−
√
n. This calculation also shows that fper is the sum of a uniformly convergent

series of continuous functions on [0, 1]n, thus it is itself continuous. Hence, Prop (3.3) applies, and given the fact that
fper is continuous, it yields, ∑

m∈Zn

f̂(m)e2πim·x =
∑
k∈Zn

f(x+ k)

for all x ∈ Tn and, by periodicity, this holds for all x ∈ Rn. □

5. Applications

We now mention some application of PSF:
• In number theory, PSF can be used to derive a variety of functional equations including the functional equation

for the Riemann zeta function. It is also a fundamental tool in the study of the distribution of integers and
prime numbers.
• In Signal processing, PSF can be used in digital signal processing to create filters and examine a signal’s

frequency content. Moreover, it can be utilised to apply Fourier transforms to discrete data.
• In Differential equations, by converting them into a sum over the Fourier coefficients of the solution, PSF can

be used to solve some differential equations (PDEs). It can also be used to examine how partial differential
equation solutions behave near singular points. It can be used to obtain explicit solutions to certain PDEs.
• In Computer science, PSF can be used in computer graphics and image processing to perform Fourier trans-

forms on discrete data. It can also be used to design algorithms for certain optimization problems.
• In Combinatorics, PSF is used in combinatorial number theory to count the number of lattice points in certain

regions. It can also be used to obtain asymptotic formulas for certain combinatorial sums.
• In Probability Theory, PSF can be used to compute the characteristic function of a random variable and to

derive the Fourier transform of a probability density function and in the study of random processes.
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