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2. Introduction

Harmonic Analysis is the branch of mathematics concerned with investigating the connections
between a function and its representation in frequency. It is used in Wavelet analysis, Signal and
Image Processing and in the study of the Fourier Transform, Fourier Series, Shift Invariant Spaces,
Refinable functions and Stability of Functions. Classical Fourier Analysis and Modern Fourier
Analysis are ⊂ of Harmonic Analysis and the former studies the Fourier Transform, Series and
Convolution. On the other hand, the latter deals with Hardy and Besov Spaces, some Kernels and
Multilinear Harmonic Analysis and could be considered as a continuation of the former.

Our project deals with the Linear Independence and Stability of Compactly Supported Dis-
tributions which is a topic in Harmonic Analysis and is studied in-depth from the Classical Fourier
Analysis perspective. Our research goals essentially are to provide proofs to show the Linear in-
dependence of these distributions, relate the Kernel of the space of semi-discrete convolutions of
a distribution to the Fourier transform of the distribution and provide some correlation between
Stability and Linear Independence.

We start by providing some introduction to Distribution Theory and its relation to our fa-
vorite familiar Lebesgue Space which is mentioned in Grafakos [4]. Later on we talk about the
Fourier Transform and one important result in Fourier Analysis - The Poisson Summation Formula
which is usually found in any text relating to Fourier Analysis. Then we explicitly state the results
of showing that compactly supported distributions are Linearly Independent which is mentioned
by Han in [3], Christensen in [7] and also how the Kernel of the space of semi-discrete convolutions
of distribution relates to the Linear Independence of Fourier transform of the distribution. Both
the above topics are thoroughly studied by Han in [3] and Ros in [8]. To demonstrate the proof
of the results, we initially acquainted ourselves with the relevant topics and concepts. We then
studied the proofs presented in the reference materials, which provided us with some insight into
how to approach the problem and, crucially, how to structure our own proofs. Finally, we used
our understanding of fundamental mathematical concepts and tricks, which would be familiar to
a competent undergraduate mathematics student i.e haven taken some upper level rigorous math-
ematic courses, to prove the results. We then briefly talk about Stability and one particular case
of Stability i.e in the Hilbert Space. Sequences which satisfy the stability condition in the Hilbert
Space are called Riesz Sequences and this is again thoroughly studied in Christensen [7], Han [3]
and Jia [9]. As the proofs and explanations related to Stability were considerably more involved,
and we lacked the necessary mathematical background to fully grasp them, we were not able to
delve deeply into these topics.

We have only provided proofs for the theorems, lemmas, propositions, and remarks that we
were able to prove on our own, with reference to familiar mathematical concepts. For those theo-
rems and other mathematical results that we could not prove ourselves, either because they were
too complex or we couldn’t prove from start to finish on our own, or because they were straight-
forward consequences of established results, we have not included their proofs. However, we have
mentioned these results as they served as the building blocks for our own results.

The proof of Linear Independence is fundamental to the study of Shift Invariant Subspaces
and Refinable Vector Functions, which are extensively researched in the works of Han [3] and
Ros [8]. This property is particularly important in signal processing and image processing, where
shift-invariance enables us to differentiate between various functions. When functions are linearly
independent, their shifted versions also maintain their unique characteristics, allowing them to be
distinguished from one another. On the other hand, Stability is widely used in approximation
theory and wavelet analysis because it ensures that small perturbations in the input function do
not result in large changes in the shifted output function. One of the key usages of stability is in
reconstruction of signals in signal processing using the sinc function.

Lastly we talk about the limitations we encountered during the research process.
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3. Distribution Theory

A Distribution is a generalized function that extends the notion of a function beyond the classical
definition of a function as a rule that assigns a unique output to each input. Instead, a distribution
assigns a value to a test function, which is a smooth function with compact support (A.1).

The theory of distributions was introduced by Laurent Schwartz in the 1940s. A key benefit
of using distributions in mathematical analysis is that they possess well-defined derivatives that
are also distributions, and hence have infinitely many derivatives in the distributional sense. This
property makes distributions a powerful tool for studying functions that may not have well-defined
derivatives in the classical sense, and allows for a more general approach to solving differential
equations and other mathematical problems.

Distributions can be defined on any open set U ⊆ Rd. However we just consider the general case
(Rd) as there mostly no changes. We denote the space of test functions as D(Rd). A test function
belongs to C ∞(Rd) and has compact support. The space D

(
Rd

)
is endowed with the topology

that fk → f(in D), as k →∞, if all the fk are supported in the same compact set K, and for any
multi-index α ∈ Nd, limk→∞ ∥∂α (fk − f)∥∞ = 0, where ∥ · ∥∞ stands for the supremum norm.
Now we come to the definition of a distribution:

Definition 3.1. Distributions: The space D ′(Rd) of distributions on Rd is the dual (i.e a contin-
uous linear functional) of D(Rd). This means a mapping f : D

(
Rd

)
→ C is called a distribution

if it is a linear functional (A.3) and if φk → φ as k → ∞ in D(Rd), then limk→∞ f(φk) = f(φ).
We say that fk → f in D ′(Rd) as k → ∞ if all f, fk ∈ D ′(Rd) and limk→∞ f(φk) = f(φ) for all
φ ∈ D(Rd).

If φ ∈ D
(
Rd

)
, we will write its image with f ∈ D ′ (Rd

)
as ⟨f, φ⟩ := f(φ). We do this as for a

distribution f , the notation ⟨f, φ⟩, where φ ∈ D(Rd), is understood that f acts on test functions
from the space D . Here ⟨f, φ⟩ is the inner product.

Theorem 3.1. A.6.1 in [3] A linear functional f : D(Rd) → C is a distribution on Ω (that is,
f ∈ D ′(Rd)) if and only if for every compact set K ⊂ Rd, there exist a constant C > 0 and an
integer m ∈ N0 such that

|⟨f, φ⟩| ≤ C
∑

|β|1≤m

∥∥∂βφ
∥∥
∞ , ∀φ ∈ D(Rd) with support inside K.

The following result loosens the continuity condition if we know a functional is linear.

Proposition 3.2. Consider a linear functional f : D
(
Rd

)
→ C then if φm → 0 in D

(
Rd

)
, then

⟨f, φm⟩ → 0 in C in order for f to be continuous, and thus a distribution.

Proof. Let φk → φ be a convergent sequence in D
(
Rd

)
then we get {φk− φ} → 0 in D . Then by

definition f, ⟨f, φk − φ⟩ → 0. Because of linearity, ⟨f, φk − φ⟩ = ⟨f, φk⟩− ⟨f, φ⟩, and we get that
⟨f, φk⟩ → ⟨f, φ⟩ □.

Example 3.1. Let φ be a testing function in Rd. The functional δ : D
(
Rd

)
→ C given by

⟨δ, φ⟩ = φ(0) is called Dirac delta function which is a distribution. It is clear that the delta
function is linear; ⟨δ, αφ + α̃φ̃⟩ = αφ(0) + α̃φ̃(0) = α⟨δ, φ⟩ + α̃⟨δ, φ̃⟩, for every φ, φ̃ ∈ D and
α, α̃ ∈ C . For continuity, let φn → φ(0) in D. Now ⟨δ, φn⟩ = φn(0) and we need to show
⟨δ, φn⟩ → ⟨δ, φ⟩ in C. We have uniform convergence in D , therefore limn→∞ ∥φn − φ(0)∥∞ = 0.
Therefore, limn→∞ |φn(0− φ(0)| = 0.

3.1. Schwartz Functions. The Schwartz space, denoted by S (Rd), is a space of smooth functions
on Rd that decay rapidly at infinity and have all their derivatives also decay rapidly at infinity. It
is a fundamental class of test functions used in the theory of distributions and Fourier analysis.
The Schwartz space is named after the French mathematician Laurent Schwartz who introduced
it in the 1940s as a way to provide a rigorous foundation for the Fourier transform.

Definition 3.2. The Schwartz class: S (Rd) consists of all C∞(Rd) functions f such that for
every α, β ∈ Nd

0, ρα,β(f) :=
∥∥xα∂βf(x)

∥∥
∞ < Cα,β < ∞. The quantities ρα,β(f) are called the

Schwartz seminorms of f .
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The following alternate characterization of the Schwartz class is more intuitive.

Note. A C ∞ function f is in S if and only if for all positive integers N and all multi-indices
α there exists a positive constant Cα,N such that |(∂αf) (x)| ≤ Cα,N(1 + |x|)−N . Intuitively, this
means that the function and all its derivatives approach zero faster than any inverse power of the
distance from the origin as x tends to infinity. Schwartz functions are important because they form
a natural class of test functions for distributions.

Therefore we have that
D

(
Rd

)
⊆ S

(
Rd

)
⊆ C∞ (

Rd
)

Example 3.2. Consider f(x) = e−x2 , to see that f(x) belongs to the Schwartz space S (R),
we need to check that f(x) is smooth and that its derivatives decay rapidly as |x| → ∞. The
function f(x) is clearly infinitely differentiable, and its nth derivative can be expressed as f (n)(x) =

(−1)ne−x2 ∑n
k=0

(
n
k

)
(2x)n−k(2k−1)!!, let Pn(x) =

∑n
k=0

(
n
k

)
(2x)n−k(2k−1)!! and Pn(x) denotes the

polynomial of degree n that can be expressed in terms of the Hermite polynomials.
It can be shown that |Pn(x)| ≤ Cn(1+x2)n/2 for all x ∈ R, where Cn is a constant that depends

on n. This implies that |f (n)(x)| ≤ Cne
−x2

(1+x2)n/2 for all x ∈ R, which shows that the derivatives
of f(x) decay rapidly as |x| → ∞. Therefore, f(x) belongs to the Schwartz space S (R).

However, f(x) is not compactly supported, since it does not vanish outside any bounded interval.
In fact, f(x) is a positive function that is nonzero for all x ∈ R, and its support is the entire real
line. Therefore, f(x) is an example of a function that belongs to the Schwartz space but is not
compactly supported. □

We say that for fk, f in S
(
Rd

)
∀k ∈ N, fk converges to f in S

(
Rd

)
if for all multi-indices

α and β we have ρα,β (fk − f) =
∥∥xα

(
∂β (fk − f)

)
(x)

∥∥
∞ → 0 as k → ∞. In fact, 3.2.8 in [4]

correlates convergence in S and the Lp space (A.4), it says if f, fk,∈ S
(
Rd

)
∀k ∈ N. If fk → f

in S then fk → f in Lp ∀p ∈ (0,∞].
The following is another result found in Page 119 in [4] which we will prove and will be useful

in the results that follow.

Theorem 3.3. S
(
Rd

)
⊆ Lp

(
Rd

)
for p ∈ [1,∞].

Proof. Let f ∈ S (Rd), β = (0, 0, · · · 0) ∈ Nd
0 ,we need to show f ∈ Lp

(
Rd

)
. Consider,∫

Rd

|f(x)|pdx =

∫
Rd

((
1 + |x|ñ

)
|f(x)|

)p
(1 + |x|ñ)p

dx =

∫
Rd

(∣∣(1 + |x|ñ) f(x)|)p 1

(1 + |x|ñ)p
dx

Now
(
|
(
1 + |x|ñ

)
f(x)|

)p ≤ supx∈Rd(|
(
1 + xñ)f(x)|)p =

∥∥(1 + xñ
)
f
∥∥p

∞ =
∥∥f + xñf

∥∥p

∞ ≤ (ρ0,0(f)+

ρñ,0(f))
p <∞ as f ∈ S (Rd). Let C = (ρ0,0(f) + ρñ,0(f))

p. Thus we get,∫
Rd

|f(x)|pdx ≤ C

∫
Rd

1

(1 + |x|ñ)p
dx = C(

∫
|x|<1

1

(1 + |x|ñ)p
dx+

∫
|x|>1

1

(1 + |x|ñ)p
dx)

≤ C(

∫
|x|<1

1

(1 + |x|ñ)p
dx+

∫
|x|>1

1

(1 + |x|ñ)
dx) ≤ C(

∫
|x|<1

1dx+

∫
|x|>1

1

(|x|ñ)
dx)

which is finite as p ∈ [1,∞] and 1/(1 + |x|) ≤ 1 for |x| ≥ 0 □

3.2. Tempered Distributions. Tempered distributions are a special class of distributions. They
are defined as linear functionals that are continuous on a larger space of test functions, which
includes not only the space of smooth compactly supported functions, but also some spaces of
rapidly decreasing functions.

Because tempered distributions are linear functionals that satisfy the continuity condition on a
space of test functions, they are by definition distributions.

Definition 3.3. Tempered Distributions : The space S ′ (Rd
)

of tempered distributions on Rd

is the dual of S
(
Rd

)
, i.e. f ∈ S ′ (Rd

)
means that f is a continuous linear functional on S (Rd).
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Theorem 3.4. A.6.1 in [3] A linear functional f on S
(
Rd

)
is a tempered distribution if and only

if there exist C > 0 and k,m integers such that

|⟨f, φ⟩| ≤ C
∑

|α|≤m,|β|≤k

ρα,β(φ), ∀φ ∈ S
(
Rd

)
or if there exist C > 0 and m ∈ N0 such that

|⟨f, φ⟩| ≤ C
∑

|β|1≤m

∥∥(1 + | · |2)m ∂βφ
∥∥
∞ ∀φ ∈ S

(
Rd

)
Note. In fact, every tempered distribution is a distribution, i.e S ′ (Rd

)
⊂ D ′ (Rd

)
Definition 3.4. Let fk, f ∈ S ′ (Rd

)
∀k ∈ N . We say that the sequence converges to the tempered

distribution f if for every φ ∈ S , the sequence ⟨fk, φ⟩ converges to ⟨f, φ⟩.

Using the definition mentioned above we discuss some properties of tempered distribution like
the sum of tempered distribution and what happens when we multiply by a constant. Consider
f, g ∈ S ′ (Rd

)
, α ∈ C and consider φn to be a convergent sequence in S such that φn → φ. We get

|⟨f + g, φn⟩| ≤ |⟨f, φn⟩|+ |⟨g, φn⟩| → |⟨f, φ⟩|+ |⟨g, φ⟩| and |⟨αf, φn⟩| ≤ |α∥ ⟨f, φn⟩| → |α∥ ⟨f, φ⟩|.

Similar to Theorem (3.3) (Page 120 in [4]) we have the following result:

Theorem 3.5. Lp

(
Rd

)
⊆ S ′ (Rd

)
for p ∈ [1,∞].

Proof. Again let β = (0, 0, · · · 0) ∈ Nd
0. For every φ ∈ S

(
Rd

)
, we get

(∣∣(1 + xñ
)
φ(x)|

)p ≤
supx∈Rd(|(1 + xñ)φ(x)|)p =

∥∥(1 + xñ
)
φ
∥∥p

∞ =
∥∥φ+ xñφ

∥∥p

∞ ≤ (ρ0,0(φ) + ρñ,0(φ))
p < ∞.Therefore

we have,∣∣∣∣∫
Rd

f(x)φ(x)dx

∣∣∣∣ ≤ ∫
Rd

|f(x)∥φ(x)|1 + |x|
ñ

1 + |x|ñ
dx ≤ (ρ0,0(φ) + ρñ,0(φ))

p

∫
Rd

|f(x)|
1 + |x|ñ

dx

Again let C = (ρ0,0(φ) + ρñ,0(φ))
p. We saw in the proof of Theorem (3.3) that the function

1/
(
1 + |x|ñ

)
is in Lp. Therefore, let p̃ be such that 1/p+1/p̃ = 1, by Hölder’s inequality (B.1) we

get ∣∣∣∣∫
Rd

f(x)φ(x)dx

∣∣∣∣ ≤ C

∫
Rd

|f(x)|
1 + |x|ñ

dt ≤ C∥f∥p
∥∥∥∥ 1

1 + |x|ñ

∥∥∥∥
p̃

<∞

where p̃ is such that 1/p + 1/p̃ = 1 and it follows from Hölder’s inequality (B.1). Therefore,∫
Rd f(x)φ(x)dx defines a distribution and let this be f(φ) = ⟨f, φ⟩. Linearity trivially follows and

we show continuity. We have φk(x) → φ(x) and |φ(x)| ≤ C0,N(1 + |x|)−N and we need to show
⟨f, φk⟩ → ⟨f, φ⟩. Well, by DCT (B.2),

lim
k→∞
⟨f, φk⟩ = lim

k→∞

∫
Rd

f(x)φk(x) =

∫
Rd

lim
k→∞

f(x)φ(x) =

∫
Rd

f(x)φ(x) = ⟨f, φ⟩

□

Remark. We could have also invoked Theorem (3.4) to prove the above but we wanted to show
one example of proving a particular function is a tempered distribution using the definition. From
here on we will just invoke Theorem (3.4).

Definition 3.5. The space E ′ (Rd
)

of distributions with compact support on Rd is the linear space
of all distributions in D ′ (Rd

)
with compact support.

We say that fn → f in E ′ (Rd
)

if all f, fn ∈ E ′ (Rd
)

and ⟨fn;φ⟩ → ⟨f ;φ⟩ for all φ ∈ C∞ (
Rd

)
.

The dual spaces are nested as follows:

E ′ (Rd
)
⊆ S ′ (Rd

)
⊆ D ′ (Rd

)



LINEAR INDEPENDENCE AND STABILITY OF INTEGER SHIFTS OF FUNCTIONS 7

4. Fourier Transform

4.1. Introduction. The Fourier Transform is a powerful tool that helps us convert a function
f(x) defined in the (usually time) x ∈ R domain to another function f̂(ξ) in the (frequency) ξ-
domain which describes the frequency spectrum of the function f which is typically represented
as a graph showing the amplitude or magnitude of each frequency component as a function of
frequency. The Fourier Transform is a way to break down a signal, such as sound waves, into its
individual frequency components, which are sine and cosine waves. This decomposition makes it
easier to analyze and manipulate the signal and is used in many fields such as signal and image
processing, noise reduction and feature extraction

Definition 4.1. Fourier Transform: Given f ∈ S
(
Rd

)
the fourier transform (f̂(ξ)) is f̂(ξ) =∫

Rd f(x)e
−2πix·ξdx and if f ∈ S ′ (Rd

)
, then ⟨f̂ , φ⟩ := ⟨f, φ̂⟩ for φ ∈ S (Rd)

Definition 4.2. Inverse Fourier Transform : Given f ∈ S
(
Rd

)
the inverse fourier transform

(f̌(x)) is f̌(x) = f̂(−x) =
∫
Rd f(ξ)e

2πiξ·xdξ and if f ∈ S ′ then
〈
f̌ , φ

〉
= ⟨f, φ̌⟩ for φ ∈ S (Rd)

We define the Fourier Series for now and will come back to it later,

Definition 4.3. Fourier Series: The Fourier series is a way of representing a periodic func- tion
as a sum of sine and cosine functions with different amplitudes and frequencies. This enables us
to express a large range of functions in terms of simple trigonometric functions. The fourier series
and fourier transform are related in that the fourier transform can be thought of as the extension
of the fourier series to non-periodic signals. Moreover, a periodic signal’s fourier series coefficients
can be calculated using the fourier transform, and vice versa. The Fourier series of a function
f ∈ L1

(
Td

)
(where Td (A.2) is the d-Torus) is defined as

∑
k∈Zd f̂(k)e2πik·t, t ∈ Rd where the k-th

Fourier coefficient f̂(k) of f is f̂(k) =
∫
Td f(t)e

−2πik·tdt, k ∈ Zd.

The following lemma tell us that the Fourier Transforms of a schwartz function and tempered
distribution are schwartz function and tempered distribution respectively.

Lemma 1. A.6.3 in [3] Let φ ∈ S (Rd), f ∈ S ′(Rd) then φ̂ ∈ S (Rd), f̂ ∈ S ′(Rd).

The following important theorem is proved using the above lemma.

Theorem 4.1. A.6.3 in [3] (i) The Fourier transform F : S (R) → S (R), f 7→ f is a home-
omorphism of S (R) onto itself and F−1 is its continuous inverse. ii) The Fourier transform
F : S ′(R)→ S ′(R), f 7→ f̂ is a homeomorphism of S ′(R) onto itself and F−1 is its continuous
inverse. Moreover, if fn → f in S ′ (Rd

)
as n→∞, then f̂n → f̂ in S ′ (Rd

)
as n→∞.

In other words, because f is smooth, its Fourier transform is rapidly decreasing, and because f
is rapidly decreasing, its Fourier transform is smooth. Now since our project deals with translates
of functions, the following is an obvious consequence of the above definitions,

Proposition 4.2. Let φ ∈ S
(
Rd

)
. Then, if k ∈ Rd, then φ̂(x − k) = e−2πiξ·kφ̂(ξ) and if

φ, ϕ ∈ S
(
Rd

)
, then

∫
Rd

φ̂(x))ϕ(x)dx =

∫
Rd

φ(x)ϕ̂(x))dx.

Proof. Let φ ∈ S
(
Rd

)
and k ∈ Rd and define φ̃ := φ(x− k). Then we have

̂̃φ(x) = ∫
Rd

φ̃(x)e−2πix.ξdx =

∫
Rd

φ(x−k)e−2πix.ξdx = e−2πiξ.k

∫
Rd

φ(x−k)e−2πi(x−k).ξdx = e−2πiξ.kφ̂(ξ)

with the change of variable x← x− k.
The second part of the proposition is a direct consequence of Fubini’s Theorem (B.3) and we

can use Fubini’s by Theorem (3.3). □

Note. The second part of the above proposition also helps us justify the definition of the fourier
transform of f ∈ S (Rd).
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Note. We note that the above proposition also helps us justify the definition of the fourier transform
of distributions f ∈ S ′ and also translates of f ∈ S ′. We claim for every f ∈ S ′(Rd), and
k ∈ Rd, ⟨f̂(x− k), φ(x)⟩ = ⟨f(x), φ̂(x+ k)⟩. Let f̃ := f(x− k) ,we have,

⟨̂̃f, φ⟩ = ∫
Rd

̂̃fφdx =

∫
Rd

(

∫
Rd

f(x − k)e−2πiξxdx)φ(x)dx =

∫
Rd

(

∫
Rd

f(x − k)e−2πiξxdx)φ(x)dx =∫
Rd

(

∫
Rd

f(x)φ(x+ k)e−2πiξ(x+k)dx)dx = (

∫
Rd

f(x)φ̂(x+ k)dx = ⟨f(x), φ̂(x+ k)⟩ □

Example 4.1. For x0 ∈ Rd, we define ⟨δk, φ⟩ := φ (k) and we trivially have δk ∈ S ′ (Rd
)
. Also,〈

δ̂k, φ
〉
= ⟨δk, φ̂⟩ = φ̂ (k) =

∫
Rd

φ(ξ)e−2πiξ·kdξ =
〈
e−2πiξ·k, φ

〉
, δk = δ(x0 − k)

Proposition 4.3. (Fourier inversion) 3.2.5 in [4] Suppose that f ∈ L1(Td) and that∑
m∈Zd |f̂(m)| < ∞. Then f(x) =

∑
m∈Zd f̂(m)e2πim·x a.e., and therefore f is almost everywhere

equal to a continuous function.

Remark. A.5.4 in [3] If f , f̂ are in L1

(
Rd

)
, then f(x) =

∫
Rd

f̂(ξ)e2πiξ·xdξ, a.e x ∈ Rd. Therefore,

both f, f̂ ∈ L1

(
Rd

)
∩ C0

(
Rd

)
and if φ ∈ S (Rd), f ∈ S ′(Rd) then ˇ̂φ = ̂̌φ = φ and ˇ̂

f = ̂̌f = f.

The Fourier Inversion formula shows that the original function can be recovered from its Fourier
transform by the inverse Fourier transform formula.

4.2. Poisson Summation formula. The motivation for the Poisson Summation formula (PSF)
comes from the Fourier series, which expresses a periodic function as a sum of sinusoidal functions.
The Fourier transform is a generalization of the Fourier series to non-periodic functions. The PSF
relates the Fourier transform of a function on the real line to its values on the integers. It states
that if a function and its Fourier transform satisfy certain conditions, then the sum of the values
of the function on the integers is equal to the sum of the values of its Fourier transforms on the
integers. This result is remarkable because it relates a continuous function on the real line to
a discrete sequence of values on the integers. The PSF provides a way to calculate the values
of a function at integer points using its Fourier transform, which may be easier to compute or
manipulate.

Theorem 4.4. (PSF) A.5.7 in [3], 3.2.8 in [4] Suppose that f, f̂ ∈ L1

(
Rd

)
∩C

(
Rd

)
and f ∈ S (Rd)

i.e |f(x)| ≤ C(1 + |x|)−n−ε, ∀x ∈ Rd, for some C, ε > 0 and whose Fourier transform f̂ restricted
on Zd satisfies

∑
m∈Zd |f̂(m)| <∞. Then we have the relation,∑

k∈Zd

f̂(k)e2πik·x =
∑
k∈Zd

f(x+ k), ∀x ∈ Rd

We follow the proof 3.2.8 in [4] but add and justify any necessary details.

Proof. Define a function fper (·) on Td, fper (x) =
∑

k∈Zd f(x + k). This is clearly 1- periodic
as fper (x + 1) =

∑
k∈Zd f(x + k + 1) =

∑
k̃∈Zd f(x + k̃) = fper (x) where k̃ = k + 1. By the

assumption that |f(x)| ≤ C(1 + |x|)−n−ε, ∀x ∈ Rd, the above series converges absolutely and
uniformly. Hence, fper ∈ C0

(
Td

)
⊂ L1

(
Td

)
. In fact we justify that ∥fper∥L1([0,1]d) = ∥f∥L1(Rd).

∥fper∥L1([0,1]d) =

∫
Td

∣∣∣∣∣∑
k∈Zd

f(x+ k)

∣∣∣∣∣ dx ≤
∫
Td

∑
k∈Zd

|f(x+ k)| dx =
∑
k∈Zd

∫
Td

|f(x+ k)| dx

which is equal to
∑

k∈Zd

∫
[− 1

2
, 1
2 ]

d
−k
|f(x)| =

∫
Rd |f(x)|dx = ∥f∥L1(Rd). The other direction is similar

by using the roles of fper and f reversed. Now we prove that the sequence of the Fourier coefficients
of fper equals to the restriction of the Fourier transform of f on Zd. This follows from :

f̂per(m) =

∫
Td

∑
k∈Zd

f(x+ k)e−2πim·x =
∑
k∈Zd

∫
Td

f(x+ k)e−2πim·x =
∑
k∈Zd

∫
[− 1

2
, 1
2 ]

d
−k

f(x)e−2πim·x
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which is equal to
∫
Rd f(x)e

−2πim·xdx = f̂(m) where x ← x + k. Now we justify the interchange
of sum and integral in the above proofs. For any x ∈ Td = [0, 1]d, we note that 0 ≤ |x| ≤

√
n as

|x| := (|x1|2 + · · · + |xn|2)1/2 for x ∈ Td. Therefore, by |f(x)| ≤ C(1 + |x|)−n−ε, ∀x ∈ Rd, and by
the Weierstrass M -test of uniform convergence of series,

fper (x) =
∑
k∈Zd

f(x+ k) ≤
∑
k∈Zd

1

(1 + |k + x|)n+ε
≤

∑
k∈Zd

(1 +
√
n)n+ε

(1 +
√
n+ |k + x|)n+ε

≤
∑
k∈Zd

Cn,ε

(1 + |k|)n+ε
,

which is < ∞ and we used |k + x| ≥ |k| − |x| ≥ |k| −
√
n. This calculation also shows that

fper is the sum of a uniformly convergent series of continuous functions on [0, 1]d, thus it is itself
continuous. Hence, Prop (4.3) applies, and given the fact that fper is continuous, it yields,∑

m∈Zd

f̂(m)e2πim·x =
∑
k∈Zd

f(x+ k)

for all x ∈ Td and, by periodicity, this holds for all x ∈ Rd. □

Remark. In fact, if we put x = 0 ∈ Rd in the above equation we get∑
m∈Zd

f̂(m) =
∑
k∈Zd

f(k)

which is a more clear representation of how the PSF relates a function defined on the real line to
the Fourier series and this gives us a deep insight into the structure of functions and their Fourier
series, allowing us to understand their properties and behavior in a more fundamental way.

Theorem 4.5. (the Poisson Summation Formula for Distributions) A.6.5 in [3] Let f be a com-
pactly supported distribution on Rd. For ζ ∈ Cd,∑

k∈Zd

f(x− k)e−iζ(x−k) =
∑
k∈Zd

f̂(ζ + 2πk)ei2πk·x

in the sense of distributions.

4.3. Parseval’s Relation and Plancherel’s Identity.

Theorem 4.6. 2.2.4 in [4] Given f, g in S (Rd), we have

(1) (Parseval’s relation)
∫
Rd

f(x)g(x)dx =

∫
Rd

f̂(ξ)ĝ(ξ)dξ,

(2) (Plancherel’s identity) ∥f∥L2 = ∥f̂∥L2 =
∥∥f̌∥∥

L2

Proof. Define f̃(x) = f(−x). Now we have by the definition (4.1) we have

f̂(ξ) =

∫
Rd

f(x)e−2πix·ξdx =

∫
Rd

f(x)e2πix·ξdx =

∫
Rd

f(x)e−2πix·ξdx = f̂(−ξ) = ˜̂
f(ξ)

Using this and by Proposition (4.2) we have
∫
Rd f(x)ĥ(x)dx =

∫
Rd f̂(x)h(x)dx, definition (4.2),

remark (4.3) and by using the fact that ̂̃
f =

˜̂
f , we let h = ĝ and we get the following,

ĥ = ̂̂g =
˜̂
ĝ =

̂̃̂
g =

̂̃̂
g = ̂̌g = g

which gives us (1). Now (2) is a straightforward consequence of (1). □

Similar to the above theorem which is for functions defined in the Schwartz Space we have the
following proposition which is defined for functions in the d−Torus.

Proposition 4.7. 3.2.7 in [4] The following are valid for f, g ∈ L2(Td) :

(1) (Parseval’s relation)
∫
Td

f(t)g(t)dt =
∑
m∈Zd

f̂(m)ĝ(m).

(2) (Plancherel’s identity) ∥f∥2L2
=

∑
m∈Zd

|f̂(m)|2
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Parseval’s relation and Plancherel’s identity are two significant results in mathematics that relate
to the properties of functions and their Fourier transforms. Both results have critical applications
in many areas of mathematics and science, including signal processing, quantum mechanics, and
harmonic analysis and they will prove useful to us when we discuss stability of functions.

5. Linear Independence

For v = {vk}k∈Zd ∈ ℓ(Zd) and a compactly supported distribution f , we say {f(· − k)}k∈Zd is
called ℓ(Zd) - linearly independent or (globally)-linearly independent (5.2.2 in [3]) if

∑
k∈Zd vkf(·−

k) = 0 =⇒ vk = 0 ∀ k ∈ Zd. To show this for any f ∈ E ′(Rd) we need to prove the claim below.
Linear Independence is important for integer shifts of compact support functions because it al-

lows for stability and shift invariance i.e, when the functions are linearly independent, the shifted
versions are also linearly independent, which means that the shifted functions retain their unique
characteristics and can be distinguished from one another. This property is handy in signal pro-
cessing and image processing.

Claim 1. 2.3.8 in [4] Let (ck)k∈Zd ∈ ℓ(Zd) such that |ck| ≤ A(1+ |k|)M for all k and some fixed M
and A > 0. Let δk denote Dirac mass at the integer k. Then the sequence

∑
|k|≤n ckδk converges

to some tempered distribution f in S ′ (Rd
)

as n→∞. Also f̂ is the S ′ limit of the sequence of
functions fn(ξ) =

∑
|k|≤n cke

−2πiξ·k.

Proof. Let φ(x) ∈ S (Rd), fn(x) :=
∑

|k|≤n ckδk and show limn→∞⟨fn, φ⟩ = ⟨f, φ⟩ = f ∈ S ′(Rd).

|⟨fn, φ⟩| =

∣∣∣∣∣∣
〈∑

|k|≤n

ckδk, φ(x)

〉∣∣∣∣∣∣ ≤
∑
|k|≤n

|ck| |⟨δk, φ(x)⟩| ≤
∑
|k|≤n

A(1 + |k|)M |φ(k)|

≤
∑
|k|≤n

A(1 + |k|)M
∣∣∣∣φ(k)(1 + |k|)d+1

(1 + |k|)d+1

∣∣∣∣ ≤ A supk∈Zd |φ(k)(1 + |k|)M+d+1|
∑
k∈Zd

∣∣(1 + |k|)−d−1
∣∣

Now by Weierstrass M -test of uniform convergence of series,
∑

k∈Zd

∣∣(1 + |k|)−d−1
∣∣ converges and

let this converge to some Ã. Let A′ = AÃ. Therefore we get, A supk∈Zd |φ(k)(1 + |k|)M+d+1| =
A′

∥∥(1 + |k|)M+d+1φ
∥∥
∞ <∞ and we get,

A′ ∥∥(1 + |k|)M+d+1φ
∥∥
∞ = A′

∥∥∥∥∥
M+d+1∑

j=0

(
M + d+ 1

j

)
|k|jφ

∥∥∥∥∥
∞

≤ A′
M+d+1∑

j=0

(
M + d+ 1

j

)
ρj,0

≤ A′(M + d+ 1)
(M+d+1

⌊M+d+1⌋
2

)∑M+d+1
j=0 ρj,0 <∞. From this and by the discrete version of DCT (B.2)

we get limn→∞⟨fn, φ⟩ = ⟨f, φ⟩ = f . Let β = (0, 0, · · · 0) ∈ Nd
0. By Theorem (3.4), we get that

⟨f, φ⟩ ∈ S ′(Rd). Now recall ⟨δ̂k, φ⟩ =
〈
e−2πiξ·k, φ

〉
by example (4.1). Since |ck| ≤ A(1 + |k|)M we

get |fn(ξ)| =
∣∣∣∑|k|≤n cke

−2πiξ·k
∣∣∣ ≤∑

|k|≤n |cke−2πiξ·k| =
∑

|k|≤n |ck| ≤
∑

|k|≤nA(1 + |k|)M = O(nM)

which shows polynomial growth of fn(ξ) and shows us that its bounded by CnM for some C > 0
by (A.6). Therefore we can take Fourier transform on both sides of fn(x) =

∑
|k|≤n ckδk to get

fn(ξ) =
∑

|k|≤n cke
−2πiξ·k. Thus, by Lemma (L.1) and Theorem (4.1) we get the desired result. □

Remark. The reason we need the above claim and the compactly supported condition is that it
helps us define the infinite sum in the compact distribution space which is endowed with the weak
topology defined in Definition (3.1) , it helps us justify taking the Fourier transform of the infinite
sum f and also if f ∈ E ′(Rd) then in fact by the Schwartz’s Paley-Weiner Theorem A.6.4 in [3], f̂
defined on Rd is actually an entire function on Cd !!

We finally come to the main results of the thesis which involves proving Linear Independent of
the Integer Shift of Compactly Supported Distributions.

Lemma 2. Let f̂ =
∑

k∈Zd cke
−2πiξ·k ∈ E ′(Rd). If f̂ = 0 then ck = 0 ∀k ∈ Zd where (ck)k∈Zd ∈

ℓ(Zd) such that |ck| ≤ A(1 + |k|)M for all k and some fixed M and A > 0.
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Proof. To prove linear independence of f̂ we use the Function Independence Theorem (Prop
3.1 in [5]). Consider the finite sum fn(ξ) :=

∑
1≤k≤n cke

−2πiξ·k. We first show this is linearly
independent. It follows that

∑
|k|≤n cke

−2πiξ·k is linearly independent. For simplicity let m = −2πiξ
and consider the Wronskian of {em, e2m, · · · enm}. Denote this by W ({em, e2m, · · · enm}). We have,
W ({em, e2m, . . . enk}) =∣∣∣∣∣∣∣∣∣∣∣∣∣

em e2m · · · enm
em 2e2m · · ·nenm
em 22e2m · · ·n2enm

... . . .

... . . .
em 2ne2m · · ·nn−1enm

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · · · · 1
1 2 · · · · · ·n
1 22 · · · · · ·n2

... . . . · · ·

... . . . · · ·
1 2n · · · · · ·nn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

em · · · · · ·
0 e2m . . . 0
... . . . ...
... . . . ...
0 0 · · · em

∣∣∣∣∣∣∣∣∣∣∣
where we used |AB| = |A||B|. We can do this as both |A|, |B| ̸= 0, to see this let A be the left
matrix and B be the diagonal matrix. Clearly |B| =

∏
1≤i≤n e

mi ̸= 0 as emi ̸= 1 ∀i ∈ Zd. Now
consider A, ∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · · · · 1
1 2 · · · · · ·n
1 22 · · · · · ·n2

... . . . · · ·

... . . . · · ·
1 2n · · · · · ·nn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(aj − ai) = (n− 1)!(n− 2)! . . . 1 ̸= 0

where ai, aj ∈ {1, 2, . . . n} ∋ ai ̸= aj. We get the above computation as A is essentially just
the Vandermonde matrix [6] whose determinant is nonzero if and only if all ai, aj are not equal.
Therefore W ({em, e2m, . . . enk}) ̸= 0 and we get that {em, e2m, . . . enk} is a linearly independent set
which implies that

∑
1≤k≤n cke

−2πiξ·k = 0 =⇒ ck = 0 ∀k ∈ Zd. Following a similar calculation
above we also get that

∑
|k|≤n cke

−2πiξ·k = 0 =⇒ ck = 0 ∀k ∈ Zd. Now from the above claim
(C.1) we know that the infinite sum

∑
k∈Zd cke

−2πiξ·k is defined and using the fact that E ′ ⊆ S ′.
Since we showed that for arbitrary finite n, fn(ξ) is linearly independent, we can conclude that the
infinite sum f̂ is linearly independent. □

The following Theorem proves Linear Independence for integer shifts of functions and is a direct
consequence of the above lemma and by the definition of the Fourier Transform. A similar result is
shown as Proposition 9.6.2 in [7] which shows linear independence for a function f ∈ L2(R)\{0}.
Theorem 5.1. Let 0 ̸≡ f ∈ E ′(Rd) . Then for x ∈ Rd,

∑
k∈Zd ckf(x−k) = 0 implies ck = 0 ∀k ∈

Zd where (ck)k∈Zd ∈ ℓ(Zd) such that |ck| ≤ A(1 + |k|)M for all k and some fixed M and A > 0.

Proof. For some x ∈ Rd consider
∑

k∈Zd ckf(x−k) = 0. Taking Fourier Transform on both sides
(justified above claim (C.1)), we get,∑

k∈Zd

ckf(x− k) = 0 =⇒
∑
k∈Zd

cke
−2πiξ·kf̂(ξ) = 0 =⇒ f̂(ξ)

∑
k∈Zd

cke
−2πiξ·k = 0

by proposition (4.2). Now f̂(ξ) ̸≡ 0 as f ̸≡ 0 as theorem (4.1) tells us that f̂ is an homeomorphism.
Therefore we must have

∑
k∈Zd cke

−2πiξ·k = 0. By Lemma L.2, we get that
∑

k∈Zd ckf(x − k) = 0
implies ck = 0. □

Definition 5.1. Semi-Discrete Convolution: Semi-Discrete convolution is a mathematical
operation that is used to combine two sequences of values (signals) in a specific way. It basically
allows one to shift and multiply one sequence by the other, and then sum the resulting values.
For c = {vk}k∈Z ∈ ℓ(Zd) and a compactly supported distribution f , we define the semi-discrete
convolution to be (v ∗ f)(·) :=

∑
k∈Zd v(k)f(· − k).

Theorem 5.2. Let f ∈ E ′ (Rd
)

and consider the sets V = {v ∈ ℓ(Z) : v ∗ f = 0} and S = {ξ ∈
Cd : f̂(ξ+2πk) = 0,∀k ∈ Zd}. We then have {eiξ·k}k∈Zd ∈ V if and only if ξ ∈ S for some ξ ∈ Cd.
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Remark. The set V can be considered as the Kernel of the space of shift of compactly supported
distributions and the theorem above relates this Kernel to the Linear Independence of the Fourier
transform of the distribution and this is Theorem 5.2.1 in [3] and Theorem 1.1 in [8]

Proof. (⇐= ) Consider the set S as defined above. If ∃ ξ ∈ Cd ∋ ξ ∈ S then f̂(ξ+2πk) = 0, ∀k ∈
Zd. Now by PSF for distributions (4.5), we get∑

k∈Z

f̂(ξ + 2πk)ei2πx·k =
∑
k∈Z

f(x− k)e−iξ(x−k) =
∑
k∈Z

f(x− k)e−iξ·xeiξ·k.

We have f̂(ξ + 2πk) = 0, ∀k ∈ Zd. Thus,∑
k∈Z

f(x− k)e−iξ·xeiξ·k = 0 =⇒ e−iξ·x
∑
k∈Z

f(x− k)eiξ·k = 0

Since, e−iξ·x ̸= 0 =⇒
∑

k∈Z f(x− k)eiξ·k = 0. Which is essentially eiξk ∗ f = 0. Take v(k) = eiξ·k.
( =⇒ ) Let v(k) = eiξ·k ∈ V . Therefore we get eiξ·k ∗ f = 0. Multiply both sides by eiξ·x. Using
PSF for distributions (4.5) and going in the reverse direction similar to the above direction by
taking ck = f̂(ξ + 2πk) and using the previous Theorem (5.1) we get the claim. □

6. Stability

The idea of function stability refers to how a function behaves when its input or parameters
are perturbed somewhat. A function is considered to be stable if it remains confined or does not
vary considerably when its input or parameters are changed slightly. In other words, if a function
is stable, slight changes in its input or parameters will not result in large changes in its output.
This is a significant notion in many fields of mathematics, including numerical analysis, differential
equations, and control theory, where mathematical models must be stable.

For 1 ≤ p ≤ ∞, we say that the integer shift of a compactly supported distribution f ∈ Lp(Rd)
is stable in Lp(Rd) if there exist positive constants C1 and C2 such that for all {vk}k∈Zd ∈ ℓp we
have,

C1∥{vk}∥ℓp(Zd) ≤

∥∥∥∥∥∑
k∈Zd

vkf(· − k)

∥∥∥∥∥
Lp(Rd)

≤ C2∥{vk}∥ℓp(Zd)

The proof for showing the stability of integer shifts of functions in Lp(R) (Theorem 5.3.4 in [3])
is done via characterization which states that if f is a compactly supported function distribution
on Rd and let f̂ be it’s Fourier transform then, the integer shift of f is stable if and only if f̂ does
not possess in Rd any 2πk-periodic zeros, i.e., the set S ′ =

{
ξ ∈ Rd : f̂(ξ + 2πk) = 0, ∀k ∈ Z

}
is

empty.

Now comparing the set S in Theorem(5.2) with the above set S ′ we get that linear independence
implies stability. Since the study in general Banach Spaces is much more involved we restrict
our study and discussion to the Hilbert Space and briefly talk about a certain type of sequences
called the Riesz Sequences which are actually stable and mention some notable results for the same.

Let H be a Hilbert space. The space L2

(
Rd

)
is a Hilbert space with the inner product given by

⟨f, g⟩ :=
∫
Rd

f(x)g(x)dx, f, g ∈ L2

(
Rd

)
,

where g(x) denotes the complex conjugate of g(x). The inner product of two elements f and g
in H is denoted by ⟨f, g⟩. If ⟨f, g⟩ = 0, then we say that f is orthogonal to g. The norm of an
element f in H is given by ∥f∥ :=

√
⟨f, f⟩.
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Definition 6.1. Riesz Sequence A sequence (fk)k∈Zd in H is called a Riesz sequence if there
exist two positive constants A and B such that the inequalities

A ∥{ck}∥ℓ2 ≤

∥∥∥∥∥∑
k∈Zd

ckfk

∥∥∥∥∥
L2(Rd)

≤ B ∥{ck}∥ℓ2

hold true for every finite sequence (ck)k∈Zd . If (fk)k∈Zd is a Riesz sequence in H, and if the linear
span of {fk : k ∈ Zd} is dense in H, then (fk)k∈Zd is a Riesz basis of H and where,

∥{ck}∥2ℓ2 =
∑
k∈Zd

|ck|2 <∞

We now recall the Fourier Series we introduced in (A.2). For a function f ∈ L1(Td) (where Td

(A.2) is the d-Torus) the Fourier Series is defined as
∑

k∈Zd f̂(k)e−2πik·t, t ∈ Rd, where the k-th
Fourier coefficient f̂(k) of f is f̂(k) =

∫
Td f(t)e

2πik·tdt, k ∈ Zd and let ck = f̂(k) for simplicity.

Definition 6.2. The bracket product of two functions f, g ∈ L2(Rd) is defined as follows:

[f, g](ξ) :=
∑
k∈Zd

f̂(ξ + 2πk)ĝ(ξ + 2πk), ξ ∈ Rd

and note that [f, f ](ξ) :=
∑

k∈Zd |f̂(ξ + 2πk)|2.

Now we actually have that [f, g] is a periodic function on Rd and is integrable over Td and its
Fourier coefficients [11] are given by

ck :=

∫
Td

[f, g](ξ)e2πik·ξdξ =
1

(2π)s

∫
T d

∑
k̃∈Zs

f̂(ξ + 2k̃π)ĝ(ξ + 2k̃π)e2πik·ξdξ

=

∫
Rd

f̂(ξ)ĝ(ξ)e−2πik·ξdξ = ⟨f, g(· − k)⟩, k ∈ Zd,

where we used Parseval’s relation (4.6). Now Plancherel’s Identity (4.6) gives us,∑
k∈Zd

|⟨f, g(· − k)⟩|2 =
∫
Td

|[f, g](ξ)|2dξ.

Thus, f is orthogonal to g(· − k) for all k ∈ Zd if and only if [f, g](ξ) = 0 for almost every ξ ∈ Rd.
Let A and B be the essential infimum and essential supremum of [f, f ] over Td. Then (f(·−k))k∈Zd

is a Riesz sequence in L2(Rd) if and only if B <∞ (respectively, 0 < A ≤ B <∞). In particular,
we have,

Theorem 6.1. 3.24 in [10] For any function f ∈ L2(Rd) and constants 0 < A ≤ B < ∞, the
following two statements are equivalent:
(i) {f(· − k)}k∈Zd is a Riesz sequence with Riesz bounds A and B

(ii) The Fourier transform f̂ of f satisfies

A ≤ [f, f ](ξ) ≤ B, a.e. for some ξ ∈ Rd

The following is a direct consequence of the above definitions and theorems which is essen-
tially the characterization of linear independence property we mentioned at the beginning of our
introduction to stability.

Corollary. 9.3.5 in [7] Assume that f ∈ L2(Rd) is compactly supported. Then the following are
equivalent:
(i) {f(· − k)}k∈Zd is a Riesz sequence.
(ii) For every ξ ∈ Rd, there exists an k ∈ Zd such that f̂(ξ + 2πk) ̸= 0.
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7. Limitations

Although stability is one of the major topics for my project, the proofs, and text regarding
stability were very involved and required background material from areas of math that I was
not familiar with. Because of this, I struggled to get a good grasp of the underlying proofs and
assumptions that were being made in any relevant text related to stability. Additionally, due to my
lack of familiarity with these concepts, it made it difficult to identify the most relevant sources of
information and material. Due to the limited time available, I decided to spend most of it learning
the background material regarding Distribution Theory and Fourier analysis to get a good grasp
of these concepts and present results relating to Linear Independence.

8. Applications

Linearly independent integer shifts of a function are important for interpolation because they
form a set of basis functions that can be used to represent any function that is band-limited to the
same cut-off frequency.

Linear Independence is fundamental in the study of Shift Invariant Subspaces and Refinable
Vector Functions

Linearly independent and stability of integer shifts are important concepts in the numerical solu-
tion of partial differential equations. These concepts are closely related to the concept of numerical
stability, which is essential for obtaining accurate and reliable solutions to partial differential equa-
tions. For example, if a solution is stable under integer shifts, then it can be discretized effectively
on a grid with a finite number of points.

Stability is widely used in approximation theory and wavelet analysis. One of the key uses of
Stability is in the reconstruction of signals known as the Nyquist-Shannon Sampling Theorem [2].
The stability of integer shifts of functions allows us to reason about the signal’s behavior under time
translations. It ensures that the sampling process preserves the temporal structure of the signal,
allowing us to reconstruct the original signal from the samples. Without the stability condition,
the reconstructed signal might be distorted or incorrect.

9. Discussion

In this thesis, in section 3 we start by introducing and discussing various types of Distributions
3.1, 3.2, 3.5 and few of their properties and lastly discuss their relation to the Lebesgue Spaces 3.3,
3.5. Then in section 4 we discuss the Fourier Transform 4.1, Inverse Fourier Transfrom 4.2, Fourier
Series 4.3 and some properties of the same 1, 4.1, 4.2. We later mention some well-known results
like the Fourier Inversion 4.3, Poisson Summation Formula 4.4, PSF for distributions 4.5 and the
Parseval’s and Plancherel’s Theorems 4.6. Then in sections 5 and 6 we finally discuss Linear
Independence and Stability of Functions. We present the important results 1, 2, 5.1, 5.2 we proved
in Linear Independence and later introduce and discuss some results in Stability 6.1, 1. Lastly, we
talk about some limitations we encountered during the research process and applications.
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Appendix A. Glossary

A.1. supp(f) : Support of a Function i.e clX({x ∈ X : f(x) ̸= 0}).

A.2. Td : d− dimensional Torus i.e the cube [0, 1]d with opposite sides identified.

A.3. f(u) = ⟨f, u⟩ : Linear Functional i.e
for any a, b scalars , u, v vectors, f(au+ bv) = af(u) + bf(v).

A.4. Lp(·) : Space of all f defined on Rd and Td, such that ∥f∥Lp(Rd) :=
(∫

Rd |f(x)|pdx
)1/p and

∥f∥Lp(Td) :=
(∫

Td |f(x)|pdx
)1/p are finite.

A.5. Fñ(t) : The Fejér kernel i.e Fñ(t) =
∑

|k|≤ñ−1

(
1− |k|

ñ

)
eikt

A.6. O(f(·)): Big-O i.e
f(n) = O(g(n)) as n→∞ ⇔ ∃C > 0,∃N ∈ N such that |f(n)| ≤ C|g(n)| for all n ≥ N .

Appendix B. Preliminary Theorems

Theorem B.1. (Hölder Inequality) Let E ⊆ Rd be a Lebesgue measurable set, 1 ≤ p ≤ ∞
and 1/p+ 1/p′ = 1, ∣∣∣∣∫

E

f(t)g(t)dt

∣∣∣∣ ≤ (∫
E

|f(t)|pdt
)1/p(∫

E

|g(t)|p′dt
)1/p′

.

Theorem B.2. (Lebesgue Dominated Convergence Theorem) Let E ⊆ Rd be a Lebesgue
measurable set and g be an integrable function and {fn} be a sequence of measurable functions
such that |fn(t)| ≤ g(t) a.e. and fn(t)→ f(t) a.e. t ∈ E. Then∫

E

f(t)dt =

∫
E

lim
n→∞

fn(t)dt = lim
n→∞

∫
E

fn(t)dt

Theorem B.3. (Fubini’s Theorem) Let E be a measurable set of Rd and F be a measurable
set of Rd. If f(t, s) ∈ L1(E × F ), then f(·, s) ∈ L1(E) a.e. s ∈ F, f(t, ·) ∈ L1(F ) a.e. t ∈ E, and∫

E×F

f(t, s)dm(t, s) =

∫
F

{∫
E

f(t, s)dt

}
ds =

∫
E

{∫
F

f(t, s)ds

}
dt
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