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1 Introduction

1.1 Fundamental Theorem of Arithmetic

Every integer n > 1 can be represented as a product of prime factors in only
one way, apart from the order of the factors. That is every nonzero integer x
can be written as

n
x=pr", p1<p2<...<Dp, primes,n>0,e; >0

i=1
1.1.1 Greatest common divisor and Least common multiple

If two positive integers  and y have the factorizations

oo )
z=[Is, v=]I»"
i=1 =1

Then,

oo
ged(z,y) == sz." , where each g; = min {e;, f;}
i=1

lem(z,y) := sz” ,where each h; = max {e;, f;}

i=1

1.1.2 Co-prime

Co-prime or relative prime numbers are those whose ged is 1.

1.2 Big O-notation, Big (2-notation

We write
f(z) = O(g(z))if there exist constant C > 0 3 |f(z)| < C|g(z)| for all z
Similarly,

f(z) = Q(g(z)) if there exist constant C > 0 > |f(z)| > C|g(z)| for all =

1.3 Abel Summation

Let {an}n = 1°° be a sequence of complex numbers and f(t) be a differentiable
function for ¢t > 0. Set A(z) =), ., an. Then

n<lx

> anf(n) = A@)f(0) - [ AOF e

n<z



Proof: Note: a, = A(n) — A(n — 1),z € N.

Therefore Z(A(n) —A(n—1))f(n) = Z A(n)f(n) — Z An)f(n+1)

nlc n<lx n<lz—1

Y Af)FA@) (@)~ Y An)f(ntl) = A@)f(@)+ Y A)(f(n)—f(nt1)

n<z—1 n<lz—1 n<zr—1
Well:

Z A)(f(n) — f(n+1)) =— /lm A(t)f'(t)dt,t € {n,n+ 1}
n<zr—1

This proves the claim.

1.4 Homomorphism, Isomorphism and Automorphism

Two groups, (G, *) and (H,-) is a group homomorphism from (G, ) to (H, ) is
a function f : G = H >V u,v € G it holds that

fluxv) = f(u)- f(v),

where the left side is from G and right from H. Here, f preserves group
operations

A group homomorphism that is bijective; i.e., injective(preserves distinctness)
and surjective is an Isomorphism.(reaches every point in the codomain)

A group homomorphism where the domain and codomain are the same is
called a Automorphism.



2 Functions

2.1 Analytic, Multiplicative and Meromorphic functions

Analytic functions: The following are equivalent conditions for a function to
be analytic:

(1): If f is differentiable at each point of the domain D then f is called
analytic in Dj in this case, the derivative function is defined by

. +h) - 1)

! — 1 f (Z

') 750 h

(2):f can be represented as a power series iff it is analytic.

(3):The Cauchy-Riemann conditions are necessary and sufficient conditions for
a function to be analytic at a point. Let f = u(z,y) + iv(z,y), if f satisfies

u_ov ov__u
dx 9y’ Ox Oy
then f is analytic.

Multiplicative functions:

1) An arithmetical function is a map f: N — C

2) The function f is called multiplicative if

f(nm) = f(n)f(m) ¥ n,m € N where n, m are co-prime.

3) The function f is completely or totally called multiplicative if
f(nm) = f(n)f(m) ¥V n,m € N where n,m need not be co-prime

Meromorphic functions:

Complex functions which can be expressed as ratio of two analytic functions
are called meromorphic functions.

Facts: Suppose f(z) is a meromorphic function at 2g, f(2) admits an
expansion of the form,

_ J-r f-2 f-1
1(z) = (z—20)E T (z — 20)? + (2 — 20)t

and is said to have a pole of order R at zy.The coefficient of f_; is said to be
the residue of f(z) at 2z, written as Re,=,, f(z). Therefore we can rephrase
the defintion of meromorphic function to be, a function f(2) is meromorphic
iff it is analytic everywhere except for its isolated singularities ie poles.

+fot+.. filz—2z0)+ ...

2.2 Divisor Function (7(n)) and Divisor Sum Function
(o(n))

7:N = N, 7(n) := number of positive divisors of n. Example 7(p) = 2 for
primes p, 7(10) = 4.



0 :N; = Ny, o(n) := sum of all positive divisors of n.Thus o(p) =1 + p for
primes p, o(10) = 18.

2.3 MoGbius function (u(n))
p: N — Z. This important function is defined by

l,forn=1
u(n) = 0, if there exists a prime p with p? | n

(=1)", if n is a product of r different primes

Examples (1(3) = —1, u(7) = —1, u(8) = u(2%) = 0(2%(8%), u(6) = 1
Basic Properties:
The function p(n) is multiplicative ie

p(mn) = p(m)u(n), ged(m,n) =1

Proof :Let m = p1ps . .. ps where p1,p2,...,ps are distinct primes and

n = qiqQs...q where ¢1,qs,...,q: are distinct primes. Since ged(m,n) =1,
then there are no common primes in the prime decomposition between m and
n. Thus

u(m) = (=1)%, u(n) = (=1)* and p(mn) = (=1)*** by definition of function.

Therefore,
p(mn) = (=1)°** = p(m)p(n)

Theorem: If n > 1 we have

Su@=[vn]={§ fn3t

d|n

where d runs through the positive divisors of n.

Proof: Define F(n) = }_;,, #(d) since p(d) is multiplicative it implies F'(n) is
multiplicative. Also, for n > 1,let n = p$'p5? ... p5*, where pq,po, ..., are
distinct primes.Now F(n) = F(p'p5?...py*), since F' is multiplicative this
gives us F(n) = F(p{*)F(p3*) ... F(pi*). Now F(pf*) = > gpes p4(d). Since d is
a divisor of p{* therefore d € {1, p;,p?....p;*}. This gives

us,F(pf') = P qppes i(d) = u(1) + p(pi) + p(@?) + - .. + p(p?) =
1+4-1404+0+0...+0=0.Therefore, F(p;*) =0 for n > 1.For

n=1e =e=...e,=0giving us F(1) =3, u(d) = u(1) = 1.

2.4 Von-Mangoldt Function (A(n))

Aln) = log(p) if n = p* for some prime p and integerk > 1
10 otherwise

Example A(1) = 0,A(8) = A(2) =1og(2), A(3) = log(3).



Write n = p$'p3? ... pe*, taking log on both sides gives us,
log(n) = e1log(p1) + ez log(pa) + .. . ex log(pk) (unique factorisation), which is

the same as
log(n) = 3" A(d)
d|n

2.5 Chebyshev Function (¢(z))
P(z) =) An)

n<z

Chebyshev’s result: Let ¢(z) := Y. ._logp (where p is prime).Then

p<z

Y(z) <2nln2

Proof: We know,(1 + 1)?m+1 = 23:;1 ( 2mj+ 1 > et

M:< Qm’nj-l ),2MS22m+1 S MS22m'-'(1) .

Now, M = ,2mtll_ every prime in the interval (m + 1,2m + 1] appears in

(m)!(m+1)!
the numerator. Then

II »riM--
m+1<p<2m+1

Taking log on both sides and combining (1) and (2), gives us
Z logp <logM <2mlIn2
m+1<p<2m+1

Therefore , Y(2m + 1) —¢(m + 1) < 2mIn2

Now we can proceed with induction, for m = 1 we get left hand side,

log 3 < log4 on the right hand side which is true. Now assume the inequality
is true Ym > 1 upto m — 1.

We need to show ¢¥(2m + 1) — ¢(m + 1) < 2(m)log 2. Now

P2m+1) <yp(m+1)+2mlog2 = 2(m+ 1)log2 + 2mlog2 =
( By inductive hypothesis )

<2(2m+1)log2



3 Dirichlet Series

3.1 Dirichlet series introduction

The Dirichlet series is any series of the form

and the riemann zeta function is one case of the dirichlet series. The Riemann
zeta function can be expressed as:

o)==

n=1

Euler claimed:

¢(s) = HZ s H = where p is prime... (@)

P k= 0

Proof:

=1
() =1+ +33+ +53+

Dividing by 2% we get,
1 1 1 1 1

1
=T te Tt

+...

Subtracting the second equation from the first we remove all elements that
have a factor of 2 :

1 1.1, 1 1
(1—23)4() 1+3s+5+7s+93+113+13s+...

Repeating for the next term and subtracting in a similar fashion for all primes
gives us:

() 0-2)6-2) (- ) (-2

Dividing both sides by everything but the {(s) we obtain:

1 1
L e I e P e

7 11s

Claim: The Riemann zeta function converges for Re(s) > 1.

Proof: For s > 1,5 € R,{(s) converges and this can be checked by the Integral
criterion which states that if f > 0 monotone decreasing on [a, 00) where



a €N. Then [° f(x)dz converges if and only if the infinite series o f(n)
converges. Taking f(z) = 1/x°,solving this integral gives us 3%1 which
converges (s > 1). What about s € C? if s = 0 + it, we

have,|n®| = |e*27| = |eRe(®)2n| = no, Here ,|e'*™)| =1aslnneR,neN.
Consider Res > 1,

[ 0o

M 1
s| "o

n=1 n=1 n

and since Re s > 1, the series on the right converges. Thus Y o, #

absolutely in Res > 1

converges

3.2 Analytic continuation of riemann zeta function

Definition: If f(s) is analytic in a region X and g(s) is analytic in a region YV
and X CY, f(s) = g(s) Vs € X we say g is a analytic continuation of f.
Therefore applying Abel summation to Engm # gives us

= EL%] +s/1 tﬂldt where a, =1, f(n) = %

Let £ — o0,

o~ 1 = [
C(S) = 7; E = [ ts+1 dt
=s /1 %dt, {t} = fractional part

s < {t}
S — 1 — 8 1 ts+1 dt
, RHS is analytic for Re(s) > 0 except for s = 1 where it has a simple pole.

We know the log power series expansions, log(1 +z) = > 1° _ffn
Also since ((s) is analytic in the region Re(s) > 1,taking log of (a) gives us
log({(s)) = —>_, log(1 — 1%) =>0n L where p is prime,n > 1.

Differentiating both sides gives us,

¢'(s) _ -y 1 ¢ _ i A(n)

(s o pm () & m
Claim: . -
() ~=A(n) [® e
e _nz::l o —s/o e~ (e%)da
s/o e_szzp(e”)dw=s/0 e %" nge:zA(n) dw=s;A(n) 1ogne_s””dac

= sni::lA(n) [_sle_”] ” = io: AT(L:L)

logn n=1

10



3.3 Dirichlet characters

We say that a function x from the integers Z to the complex numbers C is a
Dirichlet character if it has the following properties:

(1)There exists a positive integer k such that x(n) = x(n+ k) for all integers n.
(2)If ged(n, k) > 1 then x(n) = 0; if ged(n, k) = 1then x(n) # 0.
(3)x(mn) = x(m)x(n)V integers m and n.

Principle character ()xo):

1 if(nk)=1
XO(")={ 0 ifgn,&u

If x(n) is a Dirichlet character (modk), the complex conjugate function ¥(n)
is also a Dirichlet character (modk);

x*® (n) = xo(n)

The smallest positive number v that satisfies the equation x(n) = xo(n) is
called the order of the Dirichlet character.

Orthogonal relation: (i)For any two Dirichlet charactersy, x2 modulo & we

have
k

T;M(”)XT('”) = { E’f ") i)ftﬁelr;i;(ez,

(ii)For any Dirichlet character x modulo k we have

k
_ #(k) if x = xo
X_;X(n) - { 0 otherwise

where g is the principal character modulo k. Proof:(i) If x; = x2 then
x2(n) = x1(n)~! and the sum is equal to ¢(k). Assume that x; # x2. Then
there is at least one element m such that x1(m) # xa2(m). Let

F =" x1(n)x2(n). Now, the product mn runs through A when n does, and
therefore one has

F =Y xi(mn)xz(mn) = x1(m)x2(m) Y x1(n)Xa(n) = x1(m)xa(m)F

Therefore F = 0, since x1(m)x2(m) = x1(m)x2(m)~! # 1. (ii) if we put
consider xy = x1x2 we get the result.

3.4 Dirichlet L-series
Let x : N — C be a Dirichlet character. The L -series associated to x is the

Dirichlet series -
x(n
Lis) =Y X0

n=1

11



This series converges absolutely for every s € C with Re(s) > 1.

Theorem. Let ¥ : N — C and

L(s,x) == Z X(?)

n

(1) Then we have the euler product representation

sow= I (SX8))- 1 (1532 X80 x60, )

p-prime \k=0 p-prime

(2) Since x is completely multiplicative, (1) is simplified to
X))
Ls,0x= ] (1-%27
p-prime p

Proof. Since x is multiplicative, we have for an integer n with prime
decomposition n = p’fl p§2 S p’ﬁr

x(n) =x (p'fl) X (p'z”) .x (oF)

It follows by multiplying the infinite series term by term that (in a similar
fashion how Euler claimed (a),

I (1+x(p)+x(p2)+Xp(§s3)+...>=zx(n)

S 2s
p—prime P p

For part (2), since x is completely multiplicative, x (pk) = x(p)*, hence

22 (5) - (-3) - (=)

k=0 k=0

12



3.5 Critical Strip, Line and the Riemann Hypothesis

L & -

10

Critical Strip (blue shaded region) and line(red line).

Riemann Hypothesis:
For s in the critical strip, {(s) = 0= o = Res(s) =1/2
3.6 Gamma Function

The gamma function is defined as:
oo
I'(s) = / z*1le™® da
0

3.6.1 Relationship between Gamma and zeta function

Consider the gamma, function:

o0
I'(s) = / t*le~tdt
0
Subsitute ¢t = nz in the integral to arrive at

F(S) — /oo e—nzxs—ldx
ns 0
which we then sum up to get

(s)¢(s) = /0 AR

et —1

3.6.2 Completed Zeta function

The completed zeta function is as follow:

8

&) = 5 s(s = ) (3) ¢(s)

13



4 Weiner-Ikehara Theorem (X) and PNT
4.1 Theorem Weiner-Ikehara

Let A(z) be a non-negative, monotonic nondecreasing function of z, defined
for 0 < x < co. Suppose that

f(s) = /000 A(z)e **dx

converges for $(s) > 1 to the function f(s) and that, for some non-negative

number c,
c

1) - 25

has an extension as a continuous function for Re(s) > 1. Then the limit as z
goes to infinity of e=* A(z) is equal to c.

4.2 Lemma 1l

an > 0. Let A(CL') = Znﬁz
If [ %dﬁt < 0o then A(z) ~ z, an & — oo.

an.

Proof: Suppose not, ie 3¢ > A(z;) > qz; V z;

Then a A(t) -t @ A(g;) —t @ () —t
/ —5—dt> / —=—dt > / ==L —dt

K3 i (2

Set ¢ = z;u, this gives us

gz q
q(zi) —t g—u
/x 7dt=/1 5—du=c(q) >0

t2 U

i

But, gz; < 00 = f;f" %dt < ¢, A contradiction.

4.3 Lemma 2
Suppose a, >0 A(z) =Y, an. If the Dirichlet series ® =) > | 9n

n=1 ns
converges absolutely for Re(s) > 1, and admits an analytic continuation for

Re(s) > 1 except for a simple pole at s = 1,then A(z) ~ z as £ — oo.

Proof: We have

(e <]
D= s/ A=) dz ( from section 3.2 )
1

gz+l

Now,

s *® Alz) —z D(s+1) 1 *® Alz) —z
@(S)—;=S\/1 de:m—s=[ de

14



Let z = €,

D(s+1) 1 [ (A(e) —e)et gt = /°° (A(e?) — et)e =t &t
(s+1) s Jo et(s+2) —Jo ot

Applying Theorem X, we get the result desired.

4.4 Prime Number Theorem(PNT)

Let w(z) =primes < z or in other words ) .. 1. This function is called the
prime counting function. Example: w(17) = 7,7(83) = 24

PNT states that m(z) and z/Inz are asymptotically equivalent ie

7(z)
m =
z—oo z/Inz

4.4.1 Proof

The integral [;° e=*"1 (e®) dz converges for Re(s) > 1 and equals — ¢Gs). the

s¢(s)"
function s — — CC((:)) — -1 has a continuous extension to Re(s) > 1.

Also, A > 0, the function ¢(z) = }_, ., A(n) is non-decreasing.

Now Theorem X gives 1 (e*) ~ e* as x — 00, and therefore ¥(z) ~ . Since
we showed ¢(z) ~ z, ¥(z) ~ 2 = 7(z) ~ z/lnz,
because

P(@) =D An)= logp<logz Y  1=log(z)r(z)

n<z p<z p<z

.Dividing by x on both sides gives us (3) Consider S(z)/z,

Z Inp > In(z'~¢)(n(z) — w(z*~%)(e € (0,1)

Rearraging gives ,

P(z) + (1 = e)(In(z' %) > 9(z) + (1 - )(ln(2)) (m(z'~%) > (1 - eln(z)n(x)

Dividing by z and taking limit gives us, 1 > lim; ,0,(1 — €) m(z) (Here

z/Inx
o) 1,

z/lnz —

lim,_, o @ =1 proved above ).Since ¢ was arbitrary lim;_,

15



5 Modular Forms

The modular group, sometimes denoted I'(1), is

SL(2,Z) = {( Z Z ) ta,b,c,d € Z,ad — bc = 1}.
The upper half plane is h2 = {z € C : Im(z) > 0}. We can define an action of

I'(1) on b? as follows
a b\ ,= 9 +b
c d T er+d

Lemma: Let f = ( z l()i ) (S SL(2,Z) Then,Im(fz) Im(z)

= Jez+d?-
Proof. Observe that

az+b
&= 4
_ (az4b)(d+c2)
N lez + d|?
_ bd+ ac|z|? + Re(2)(ad + bc) + i(ad — be) Im(z)
- |ez + dJ?
_ bd + ac|z|? + Re(2)(ad + be) + i Im(z)
N lcz + d|?

Hence, Im(fz) = %.

Definition: A modular form of weight k& for the modular group

SL(2,Z) = {( Z Z ) :a,b,c,deZ,ad—bc:l}

is a complex-valued function f on the upper half-plane
h? = {z € C : Im(2) > 0}, satisfying the following three conditions:

1. f is a holomorphic function on h2.
2. For any z € h? and any matrix in SL(2,Z) as above, we have:

F(E50) =+ ars

3. As z — 100, f(2) is bounded.

16



Thereom: SL(2,Z) is generated by S and T' where S = ( 0 —1 ) and

10
11
r=(o1)

Z.
b\_[(a+nc b+nd
d ) c d

1 v T
ad=1=>a=d=j:1=>g=(0 1>= or

Case (2): Suppose ¢ # 0. WLOG, we can suppose |a| > |c| (in terms of ()).
By the division algorithm we can wite a =cg+r 0<7 < ||

(255 ) o)

[ a—c b—qd

- c d
Repeating this in an iterative procedure which after a finite number of steps
leads to case 1.

5.1 Example

Let s > 2 be an even integer. Then the Eisenstein series of weight s is a
function on h?2, defined, for z € b2, by

1
G(z,8) = Z m

(m,n)€z?\{0,0}

5.2 Fundamental domain

Fundamental domain for the upper halfplane h2 under the action of SL(2,Z)
is a set F containing the representative of each orbit of h2 under SL(2,Z).

Lemma: Fix z € h2. The set (m,n) € Z2\ (m,n) # (0,0) such that
|mz + n| <1 is finite and non empty.

17



Proof: Let z =z +iy,|mz+n| <1 <> (mzx+n)?+ (my)? <1 =

(my)?2 <1 = |m|< %, m is bounded.

Also mz+n| <= -1<mz4+n<= —-1-mzx<n<l-mznis
bounded. Also, substituting (m,n) = (0,1) is example of it being non empty.

Claim: Every I'(1) -orbit in h? has a representative in
9 1
F=13z€h :|z|21,|Re(z)|§§

where % is the fundamental domain for SL(2,Z) acting on h?.
l

Proof: Let v = ( i@ n

) € SLy(Z).

_Im(2)
Im(yz) = |mz + n|?

As (m,n) # (0,0),we see that |mz + n| attains a minimum as -« varies over
SL(2,Z) (using lemma) .Now choose |mz + n| to be minimina 1, therefore
Im(vz) is maximal for v € SLy(Z)

By translation we can ensure |z| < 1

Now we claim vz > 1. Suppose not, ie vz < 1. Consider § = ( (1) (; 1 )

where S acts on vz to yield S(yz) = ;—zl, Also

-1 Im(vz
Im(—) = ( 2)
vz vz

Therefore,

Im(Svyz) = leilyg)llzz) >Im(yz) (yz<1)

Contradiction! (as Im(yz) was assumed to be maximal).

18



6 Non-Holomorphic Eisenstein series

Definition: Let z € h2,R(s) > 1. We define the Eisenstein series.

E(z,s) .=1 Z _ ¥
AT 9 =, |mz + n|?s
(m,n)=1

where h%2 = GL(2,R)/(0(2,R), and GL(2,R) is the symmetric space and
O(2,R) is the rotation space.

6.1 Convergence

E(z,8) = Es(2) = % Z yis — %ys Z 1

ged(m,n)=1 fmz +nl* ged(m,n)=1 [(’m:L' + n)2 + (my)2]s

Since E; is I'(1) -invariant, it suffices to consider 2 in a fixed compact set X
inside the usual fundamental domain

1 1
{z=x+weV:M2L—5xs2}

For such z,

(m2 + n2)

N —

(mz+n)?+(my)? = (2 + y°) m®+2z-mn+n? > m?—|mn|+n® >
Also, the sum over coprime (m,n) is mainly by the sum over all
(m,n) # (0,0). Thus,

1

Re(s
(mmjezy0,0) (M +n?)"

Now for Re(s) > 1, the function f(m,n) = m%_i_nz is > 0 and monotone
decreasing. Therefore by integral criteria consider the integral

/ / dmdn
z2\(0,0)=D (M? + n™)s

Let m =rcosf and n =rsin,
The Jacobian Matrix

_ a(ma n) _| M MMy
T6) = 56 8 _’ n.  ne

sinf rcosf

cosf —rsinf ' =r.
= rcos® 0 + rsin?6
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Therefore dmdn = rdrdf,

r

2s

J(r,0)drdé 126 [ 0er?
/D’ 7'23 //D’r drd0—/2_2sd0— —

which converges for all Re(s) > 1 and how r is defined.

6.2 Theorem

The Eisenstein series E(z, s) has the Fourier expansion

E(zy ) = 4" + d(s)y'~* + o VV Zal 2 (n)n]*~

T'(s)¢ 2s)
where r ( 1) @ )
s— 3 s —
Y =VTEG) o)
and
n) = Z ds,
d|n
and o
K.(y) = /0 et Dy
I will show

I'(s—3)¢@2s—1)
W) =VITTG c@s)

Proof: First note that

C(25)E(z,8) = C28)y" + DY ———

2
¢>0 deZ ez + dl ’

If we let 6p0 = { 1 and d = mc 4+, it follows that

n=0
0 n#0,
1 .
¢(2s) / E(z,5)e™?™n% gy
0

This gives us

= {(2s)y’ "°+Zc 2322/

r=1meZ |Z +m +

y e—27rzn:l;

Implying,

1+m+Z 27rin(z— %)

RICTIRED SE) 9D Y IIRE

r=1mezY™t%
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y e~ 21rznz

C(28)y°dn,0 + Z c % Z = / (22 + y2)° yz)

® o= 2minzy

1
¢(2s) / E(z,5)e™2""%dg = ((28)y"n,0 +01—28<”>y1‘3/_ @+ ®

Dividing both sides by {(2s)

—s foo —21r1.n1:y
@ @

¢(2s)

01-2s (n)yl

1
/ E(z,8)e™ ™" qy = y*6p0 +
0

Now need to show ,

_ A T(s—3)¢@s—1)
YO =VTIG  c@s)

Part (1) : 01-2:(0) = ((2s — 1)

Well, 01_25(n) = os(n) =Y ajn d° therefore ,

d>0

0_1_28(0) — Z d1—2s

d|o
d>0

=
0_1_2s Z dl 2s Zdl 2s Z d28 o= C(QS _ 1)
%0
I‘(s—l) .
2wix \/’TT 82 lf Yy = 0
Part (2): [% (z2+1)td = 21r‘s|y|1:££ .
T Kaop(@mlyl) iy #0

Consider the case when y = 0,

0o —21rz.7:y u du
r e~ 2mioy dz— ...
(s)/ @+ / / (1+w2) Tu @
_/ “'Lﬁ/ e e’ g=2miny 4o 2 du .. (b)
0 —oo u

Here (a) is such by the defintion of I'(s).
Plugging y = 0 in (b) gives us,

*® 1 00 —u, 8 00 —ua: du
F(S)-/—oo (xg_i_l)sdw:/(; e u /;oo 1dz Z
—_—

A
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Consider the gaussian integral,

Computing the above integral,

0o 2 ) 0o
I = (/ e_””zdw) =/ e_””zdw/ eV dy
-0 —0o0 -0

=> o0 o0 2 2
I? =/ / e (@ +y )dacdy
—00 J —00
Now let,
z=rcosf, y=rsind
therefore
r? =2% 442
=

00 27
I? = / / e~ rdrdf
o Jo

oo 2
= 27r/ re~" dr
0

° 1
:27r/ §esds ,§ = —1r?

—00

0
=7r/ e’ds
—0Q

=7 (eo - e_°°)

I=yr

Taking z = % in the gaussian integral gives us A = \/g

Thereofore (b) becomes

o 1 ® s [mdu
F(S)-/_oo (;‘(;2-1—1)8dw_/(; e u a;
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Therefore,

1 oo 1 _D(s—3)
I‘(s—i) = /_oo 7(w2+1)sda;— ()

\/7?]:‘ (s - %) ¢(2s-1)

o) =VT R e@s)
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7 Function fields

Let p power of a prime, F,, finite field .

Analogy between Number and Function fields:
Q~Fy(t)

Z ~ Fy[t]

p prime ~ p(t) monic irreducible polynomial

Inl =Z/nZ ~ || =Tp[d]/(f) = '
L
Ik

1
&=>= ~ GuE= >
n=1 FEF, ]
Equation A:
1 1\
C]Fp[t](s) = Z W = H irred,monic 1

-
FER, It pEF,y 1] e

Proof: By the division algorithm f(t) can be expressed a product of
irreducible polynomials. Also this factorisation is unique as if

f@) = p1(&)pa(t) - - pm(t) and f(2) = q1(t)g2(2) -~ gn(?)

with p1(2),...,pm(t) and ¢1(¢),...,qn(¢) all irreducible. We then have

q1(t)g2(t) -+ gn(t) = p1(t) (p2(t) - - - Pm(t)) (1)
Thus
p1(t) | q1() -+ - qu(?)

p1(t) must divide at least one of the g;(t). By reordering the ¢;(t) we can
assume without loss of generality that p;(t) | ¢1(¢). But since ¢1(¢) is by
irreducible,

q1(t) =cipr(t) , forsomec; €F, (2)

Substituting (2) into the left hand side of (1) and then dividing both sides by
p1(t) yields

c1g2(t) -+~ gn(t) = p2(t) (ps(t) - - - pm(t))

Repeating gives us,

c1€203()qa(t) - - - qn(t) = p3(t)pa(t) - - - pm(t) (3)

24



We can continue in this manner to remove irreducible factors from both sides
of (3). This yields us,

c16263 -+ = Prnt1(8)Pm42(t) - - - P (t)
But the left side are constants and right monic polynomials. Contradiction.
Now back to A, Expand the terms on the right into a geometric sum. Since
each f € F,[t] has a unique factorisation and can be written uniquely as a
product of monic irreducible polynomials. Every monic polynomial f will

appear as a product of these geometric sums. Q.E.D

Equation B:

>\ # of monic polys of deg n 1
)=> =

C]Fp [2] (S pns 1— pl—s

n=0

Proof: In the expansion of the left side of equation A, we can reorder the
expansion and grouping degree n terms together.

Claim: There are exactly p™ terms of degree n in Fy[t]. Proof: Take the case
where n = 2 ie quadratic polynomial. The polynomial is of the form

22 4+ bz + ¢ and b and c can take values {0,1,2,---p — 1}. Therefore all the
possible values/combinations of b and ¢ are p?. Similarly with the other cases.
Now equation B, we can write

Eu) =Y, >,

n=0deg(F)=n

1 " 1
—Z =11
pns n=0p’n8 1 p 8

QED

Equation C:
The completed zeta function in Fp[t] is defined as

1
£(s) = 1_71)_3(11?,,[1:] (s)
then
&(s) =p* (1 - )
Proof: Well the left side is just

1 1
1_p—s'1_p1—s

by def of £&. The right side after some calculations becomes,

2s—1 1 1

p ]__ps—l']__ps
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By multiplying the left side by p?*~! and after some simplifications the
LH=RH=

p2s—1

p2s—1 _ ps—l — ps +1

QED

7.1 Ideals

Ideals in Fp[t]: Given any polynomial f(t) € Fpt] let
() =={g@®) f(t) | 9(t) € Fp[t]}. The same is analogous in Z where (n) is
multiples of n.

Analogy in F,[t],

Fo[t]/(f) == {0,,--- 17"}
Where f monic,|f| = pd°8/ deg f = n,tt =t + (f)

Check: i j =ijand i+ j =147

Proof: Let ¢,j € Z for simplification. It translates to the F,[¢t] case in the same
way. Now, B B
i={i+n|i,n€Z}andj={i+n|jnecZ}

Therefore,

i+j=i+j+nmodn=1i+j
Similarly,
1j=14j+in+jn+n?modn =ij+nmodn =1ij
Fp[t]/(f) is a ring as all the properties of the ring Fp[t] just carry over to
Fp[t]/(f) as its operations over the representatives.

Claim:If f(¢) is irreducible and monic then Fp[t]/(f) is a field.

To show this I will first show, if
ged(f, g) = 1 then there exists p(t) and g(t) such that f.p+g.g =1
Proof:

Let m(t) = ged(f, 9)

Then m(¢) | f and m(¢) | g =

m(t)|fp, m(t)|gq and m(¢)|fp+qg9 =1=m(t)|l = m(t) = 1
Back to the claim,
Proof: It is sufficient to show that any arbitrary element

(9()) +d(t) € Fp[t]/(f) has an inverse ie ((g(t)) + d(2)).h(t) =1
Now consider d(t) > d(t) ¢ (g9(t)), therefore ged(g,d) = 1. By claim,

3b(¢), a(t) > g(t)a(t) + d(t)b(t) =1
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Rearranging,
d(£)b(t) = (—q(8))a(t) +1 € (¢(t)) + 1.
Thus
((g(t) + d(®))((q(t)) +b(t)) = (a(t) + d()b(t) = (a(¢)) +1

Therefore ((g(t) + d(t)) is invertible . Since ((g(t) + d(t)) was arbitrary it
shows that Fp[t]/(f) is a field. Q.E.D

7.2 Quadratic reciprocity

Take f, g € Fp[t] monic, square free and relatively prime. Then

()-3)
g f
where (.) is the Legendre symbol defined as

(;) — g% (modf) = x;(9), |f] = p°87

7.2.1 Fermat’s Little theorem:

If p is a prime number then a? = a(modp) for alla € Z .

Proof: We will work over the Z/nZ field to make the calculations simpler. If
a = 0, then we clearly have a? = a mod p. So we assume that a # 0. Then
a=a+ (p) € (Z/pZ). Let H be a subgroup of (Z/pZ) generated by a. Then
the order of the subgroup H is the order of the element a. By Lagrange’s
Theorem, the order |H| divides the order of the group (Z/pZ), which is p — 1.

So we write p — 1 = |H|m for some m € Z. Therefore, we have
al=gfm=1"=1

Multiplying both sides by a gives us the desired result. Q.E.D

Claim:

(g) Eg|f|2—1 (modf) = =+1, when ged(f,g) =1

Proof: From the analog of Fermat’s Little theorem, we get

g1"1 = 1 mod f, hence 0= g1 — 1 = (g(lfl—l)/2 _ 1) (g(lfl—l)/Z + 1) ,

and since f is irreducible,monic we conclude that g(fI=1)/2 = +£1 mod f.
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7.3 L-series
For f monic and square-free, define the L -series:

= T (-32)

p(t)monic,irred

_ Z x£(9)

8
g monic,g(t)#0 |g|

Completed L -series by

Lo L(s,xs) ifdeg f even
* — 1-p—s 'y Xf
L*(s:xs) { L(s,x¢) if deg f odd.

Functional equation:

L* (s,x5) = PP VAL (1 — 5, x4) if deg f even
' Xf pzs—l(p|f|)1/2—sL* (1 _ SaXf) if deg f odd.

Proposition: Let x be a non-trivial Dirichlet character modulo f. Then,
L(s, xf) is a polynomial in p~* of degree at most deg(f) — 1.

Proof. Define
Aln,xp)= > xl9)

deg(g)=n
f monic It is clear from the definition of L(s,x) that

L(s,xs) = Y _ A(n,x)p~ ™.
n=0

if we can show that A(n,x) = 0 for all n > deg(f) then the result will holds.
Let’s assume that n > deg(m). If deg(g) = n, we can write g = hf + r where r
is a polynomial of degree less than deg(f) or r = 0. Here, h is a polynomial of
degree= n — deg(f) > 0. All monic polynomials of degree n > deg(f) can be
uniquely written in this fashion. Since  is periodic modulo f and since h can
be chosen in p"~9e&(f) ways, we have

A(n, xz) =p 98D Y "x(r) =0

by the orthogonality relation since x # Xo, and the sum is over all r with
deg(r) < deg(f).

28



7.3.1 Proof of functional equation
Consider deg f to be odd.

Therefore,
deg f—1 -
L*(S’Xf)= H ( _i)
i=1 P
= - deg f—1 1
d -1 —
(_ e;sf )degf 1 H (1_ ﬂ_])
Jj=1 p°
(~1)to8 T H2 (OB e T2 (1 — s, xy)
plfl’_s( )L* (1—s,x5)
(as || =

pz and (—1)38f+1-2 — 1 since deg f =2m +1 — —12m+2 =]
Consider deg f to be even

L(s,xs) = (1—p~°)L* (s,x5) =

: 1)

eg f—
L)~ ﬁ%izd%fz II ( 1)

U]
pS‘

—s eg —2( deg f—2\deg f—2 1 *
(1-p x—ndgzviﬁéﬁfgf2L<1—ax»

23
1-po)fE 2

?)L* (1-s,x¢)
QED
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8 Multiple dirichlet series

Define an additive character on K. First let eg be a nontrivial additive
character on [F,. Use this to define a character e, of F, by

ex(a) = eo (Trg, /¥, ) . Let w be the global differential dz/z2. Finally define
the character e of Ko, by e(y) = ex (Resoo (wy)) for y € K. Note that

{yeK:e|y0=1}=0

Fix an embedding € from the the n** roots of unity of F, to CX. For r,c € O
we define the Gauss sum

s =Se((2)e(%)

For z,y € K, we write z ~ y if z/y € KX™.
Define the Dirichlet series

Ylrems)=1-g"")" 3 glrec)le™

cEO m
nn
cr~vn

where the sum is over all nonzero monic polynomials ¢ ~ 7 and |c| is g4°&°.
The n we will use are of the form 7_*,0 <7 < n.
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Appendix

A Basic Topology

A.1 Heine-Borel Theorem
A.1.1 Set of Measure Zero

A subset N C R is called a set of measure zero, if for very & > 0 there are (at
most) countably infinitely many open intervals Iy, Iy, ... such that
NCLULU..., and such that ||+ [Lo|+--- = > o, |[Ix] <€

Here for any interval I of the form (a,b), [a,b], (a, b], [a,b) we put |I| =b— a.

Lemma.
1. Subsets of a zero set are zero sets.
2. Any finite or countable union of zero sets is again a zero set.

Proof. 1.Any open cover of a set of of measure zero is also an open cover of
any subset.

2 .The case of a finite union is covered by the case of a countably infinite
union. Let Z;, ( k € N) be a countably infinite collection of sets of measure
zero, and let € > 0. Then for each k, Z; may be covered by a countably infinite
union of open intervals Iy, such that

> €
2 kel < o
=1

Let Z = Upey Zk- Then Z C Upe ;UL Ine ={z € R | 3k, £ : z € Iy 0}
By the Cauchy Double Series Theorem Y 73%_; [Tre| = Yoo 302 [Tre| =

Now Y2y X2 el < 5052 5 =¢ (25 — 1) =& But, ©2, 1Tl < 5.
Thus, Z is a set of measure zero.

A.1.2 Open cover

If S C R is any subset, an open cover or open covering of S is a family {U;},.;
of open sets U; C R such that S C J;c; Ui ={z € R | Ji: z € U}

A.1.3 Compact set

A subset K C R is called compact, if every open covering has a finite subcover,
ie,
Kcl|Ju
iel
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then there are i4,1s,...,4, € I such that

KcU,uU,u...uU;,

A.1.4 Theorem Heine-Borel
A subset K of R is compact if and only if K is bounded and closed.

A.2 Topological space

Let X # 0. A topology on X is a collection of open subsets of X which satisfy
the following-

(1) X, 0 are open.

(2) The union of any family of open sets is open.

(3) The finite intersection of any collection of open sets is open.

Suppose, 7 = { all open subsets of X}. Then a topological space is a pair
(X, 7).
A.3 Manifolds

A subset S C R is called open if for every x € s, there is € > 0 such that
(x—e€,x4+¢€) CU. A subset S C R is closed, if for every convergent sequence
on € S we have lima,, € S.

A.3.1 Homeomorphism

A continuous map ¢ : X — Y is a homeomorphism if its bijective and ¢!
exists. Homeomorphism is a continuous function between topological spaces
that has a continuous inverse function.

A.3.2 Covering space

A covering space of X is a topological space C together with a continuous
surjective map:p : C — X >V z € X 3 an open neighborhood U of z > p~1(U)
is a union of disjoint open sets in C, each of which is mapped
homeomorphically onto U by p.

A.3.3 Haussdorffness

A space X is Hausdorft if
Ve,ye X5z#y3dU,VC Xopen 3z€lU,yecVandUNV =0

Lemma: A compact subset K C X of a Hausdorff space X is closed.
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Proof: Pick y€ X\K. Eachz € K givesusz € Uandye VoUNV =0 As
K is compact, 3 finite set {x;}icr € K 3 K = {J;c; Us Then (;c; Vi is open &
disjoint from K = K closed as each y is contained in an open set disjoint from
K

A.3.4 Second countable

Let S be a set.S is countable if and only if there exists a bijection between S
and a subset of N. A countable basis for a topology X is a basis for X which is
a countable set. X is called second countable if it has a countable basis.

A.3.5 Atlases

A chart is a pair of an open set and a homeomorphism (U, ¢) that maps
elements locally around a point say x of an open set in a manifold to R™.

An atlas for a topological space is a collection of charts on a topological space
X which covers X. If the co-domain of each chart is the n — dim euclidean
space (basic coordinate system) then X is said to be a n — dim manifold.

A.3.6 Topological manifold

A topological manifold is a topological space that is Hausdorff and every point
possess an open neighbourhood homeomorphic to R™.(locally similar to R™-
we can map a point of the manifold onto the R™ plane)
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B Groups

B.1 Sub groups

A Subgroup is a subset which is also a group. H is a subgroup of G denoted
by H < G. Two standard subgroups of G are G and the trivial group = {e}
where e is the identity element.

B.1.1 Cosets

For a subgroup H and some a in G \ H, we define the left coset
aH = {ah : h € H} and the right coset Ha = {ha : h € H}.

If G is partitioned into & cosets (where each coset has same size denoted by
|H|) we say the index of G is k. Therefore, |H| - k = |G|, which is Langrange’s
theorem. Claim (1):if aH = {ah: h € H} then aH NbH =0V aH = bH.

Proof: Suppose ah; = bhy = ah = bhzhl_lh € H where h arbitrary element
in H. The right side belongs to H as closed under multiplication (H
subgroup).
Thereofore ,

Vah € aH : ah € bH

giving us
aH CbH

Similarly with the other implication. Also |aH| = |H| as consider two elements
ahi = ahy multiplying by a—! yields the required result.

B.1.2 Langrange’s theorem

Lagrange’s Theorem: If H < G, then |H| divides |G]|.

Proof: The case where subsets are {e} and G are trivial. Now suppose G is a
finite group with |G| = n Case : H < G and H # {e} Construction: Pick
a1 € G not in H. Now consider a1 H = {a; - h V h € H}(left coset)
> H(a1H = 0. Claim (2): H and a; H have no element in common Assume
there is an element in H and a;H: This means a; - h; = h; for some h; and h;
in H
aj - h,; = hj
(a1-hs)-hit =h;-hit
ay - (hi-hi') =hj-hi!
a1-e=h;- hz_l
a1=hj-hi_1€H=>a1€H

Contradiction! Similarly, consider agH = {az - h V h € H}(left coset)
5> H(\a1H () azH = 0. Repeat the process till G is divided into k such
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non-overlapping left cosets. Each coset has size |H|(by claim). Number of
cosets = k times size of each coset |H| = |G| ie n. Therefore, |H| divides |G|.

B.2 Orbits, representatives

Let X = G-set,
Definition: For z € X, the G-orbitofz € Xis G-z={g-z|ge G} C X

Orbit Decomposition
Theorem: Let X = G-set. Then X is partitioned into G-orbits. The set of
G-orbits is denoted X/G.

Proof: Suffice show z ~ g.x for z € X, g € G defines an equivalence relation.
Nzx~1l-z=2x

(2z~g-zandg-z~gl-(g-z)=(g7'9) - z=1-z=2
@)r~g-z,9g-z~h(g-z)andz~(h-g)-z=h-(g9-2)

A representative of an equivalence class is any element of X which belongs to
that equivalence class. A complete set of representatives R is a list of elements
of X such that you have a representative for each class. That is to say that
any element of X will be equivalent to exactly one element of R.

B.3 Lie Groups

A differentiable manifold is a Hausdorff and second countable topological
space X, together with a maximal differentiable atlas on X.

Let G be a topological group, with a differentiable manifold structure. If The
group operation * : G X G — G and the inverse operation *~! : G — G are
differentiable maps. G is a Lie Group

B.4 Symplectic groups

A compact (topological) group is a topological group whose topology is
compact. A topological space X is said to be disconnected if it is the union of
two disjoint non-empty open sets. Otherwise, X is said to be connected.

Sp(2n, R)-The symplectic group over the field of real numbers non-compact,
connected, simple Lie group.

Sp(2n, C)-The symplectic group over the field of complex numbers is a
non-compact, simply connected, simple Lie group.
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B.5 Metaplectic groups
B.5.1 Cover group

A covering group of a topological group G is a covering space C of H such that
C is a topological group and the covering map p : C' — G is a continuous
group homomorphism.

B.5.2 Double cover group

A topological double cover in which G has index 2 in C.

Mp(2n)-The metaplectic group is a double cover of the symplectic
group Sp(2n).

36



C Function field theory

C.1 Theory
C.1.1 Algebraic function field

If K is a subfield of L then we can view L as a field extension over K.We
define [L : K] = degree of extension :=dimy, L. If the extension if a finite
extension then for all elements in L each element can be represented as a
K-basis of L.(y = Y_;_,aiBi, Bi € K)

Now suppose a € L, we say L is algebraic over K if 3f(z) € K[z] > f(a) =0, f
non trivial polynomial.Also, 3!p(z) € K[z] monic irreducible polynomial in
K[z] s.t p(a) =0 = p(z) is called the minimal poly of a.

L is called an algebraic extension over K if v € L is algebraic over K.
z € L is transcendental over K if 3 no polynomial f(z) € K[z] > f(z) =0

An algebraic function field over K is a field extension s.t. dz € L which is
transcendental over K and [L : K(z)] < oo

C.1.2 Discrete Valuation ring

Let F/K be a function field, a valuation ring 6 of F/K is a subring of F' such
that:

(1)K G 6G F.

(2Va € F,a € 0V a~! € FVboth z € §%is a unit.

Note: If 8 is a valuation ring then P := 6\ 6* is the unique maximal ideal.

A PID with unique max ideal is a discrete valuation ring.
Every element ¢ € P 5 P = t0 is called prime element for P.

C.1.3 Maximal Idea, PID

For an ideal P of a ring R it is maximal if the following equivalent conditions
hold:

- There exists no other proper ideal J of R so that P C J.

- For any ideal J with P C J, either J = P or J = R.

-The quotient ring R/P is a simple ring.(a ring whose ideals are itself and zero)

Principal ideal is an ideal I in a ringR that is generated by a single element a
of R through multiplication by every element of R. An integral domain is a
nonzero commutative ring in which the product of any two nonzero elements is
nonzero. A PID or a principal ideal domain is an integral domain in which
every ideal is principal.
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C.2 Riemann Roch Theorem
C.2.1 Divisors

Consider the alg. extension of K over Fy(z). Let P be the unique maximal
ideal. Let K be a function field, and let Dx be the group of divisors of K,
which is the free commutative group generated by the primes.A divisor is a

finite sum
D= a(P)P
P

where P are primes of K. A divisor D is said to be effective if

a(P) = ordp(D) > 0 for all P. We denote this by D > 0.

Let a € K* (group of diviors of degree 0). The divisor of a, (a),is defined to be
> p ord p(a)P (coefficients- ord p(D)). The degree of a divisor is defined as
deg(D) = Y p a(P) deg P.The map a — (a) is a homomorphism from K* to
Dk. The image of this map is called the group of principal divisors. Let

(a)o = Zordordp(a)>o(a)P and (a)eo = — Z ordp(a)P.

P ordp(a)<0

The divisor (a), is called the divisor of zeros of a and the divisor (a) is called
the divisor of poles of a. Also (a) = (a)o — (@)co-

C.2.2 Theorem

Definition. Let D be a divisor. Define L(D) = {z € K | (z) + D > 0} U {0}.
The dimension of L(D) over F is denoted by I(D). The number (D) is
sometimes referred to as the dimension of D.them as ord p(D).Two divisors,
D4 and Do, are said to be linearly equivalent, D; ~ D5 if their difference is
principal, i.e., D1 — D2 = (a) for some a € K*.The divisor class group is the
group of divisors modulo linear equivalence

Lemma If deg(D) < 0 then I(D) = 0 unless D ~ 0 in which case [(D) = 1.
Proof. If deg(D) < 0 and = € L(D), then deg((z) + D) is both < 0 and >0
which is a contradiction. If deg(D) = 0 and L(D) is not empty, let z € L(D).
Then (z) + D > 0 and has degree zero, so it must be the zero divisor. Thus,
D ~ 0. Conversely, if D ~ 0, then (D) = [(0) = 1 since L(0) = F' because

z € L(0) implies z has no poles.

Genus: The genus of the function field K is the integer g defined by
1 - g = min(l(D) — deg(D)),

where the minimum is taken over all divisors D € Div(C).
Theorem (Riemann-Roch) There is an integer g > 0 and a Div(C) such
that for C € Div(C) and D € Dk we have

I(D) = deg(D) — g + 1 +1(C — D)
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Remarks: if we set D = 0 we get {(C) = g, if we set C = 0 we get
deg(C) = 2g — 2 and lastly If deg(D) > 2g — 2, then (D) =deg(D) —g+1.

Let hi be the number of divisor classes of degree
(D
0. For any divisor D, the number of effective divisors in Div(D) is ”;% By

remarks and theorem we get,if deg D = n > 2g — 2, then b,, = hk%

C.3 Zeta function
The zeta function of K, (k(s), is defined by

@)= 3 0= I (- 1P) =3 2

DeDg PeSk n=1
D>0

where the sum runs over all divisors D € Dk, and the product over all primes
P € Sk(set of all primes). (if K = F,(z) this is the completed zeta function)

By the definition of the completed zeta function and L-function :

_ Cx(s)

L*(s, XD) = (s) = (1 _p—s)—AL (S,XD)

where
N { 1 degD even

0 degD odd

C.3.1 Theorem

Let K be a function field over F,, of genus g. Then
P (p™°)

1-p=)(1—-p')

where Pk (p~*) is a polynomial of degree 2g.

Proof: Let b, be the number of effective divisors of degree n in Dg. Assume
that for n > 2g — 2, we have

Ck(s) =

Therefore {k(s) becomes,

29
— —sn hk p? 1 —s(2g—1)
CK(S)_,;)b"p -1 (1—p1‘s l—p‘s>p

by some manipulation we get,

Cx(s) = ( Pg(p~°)

1-p=)(1-p')

QED
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C.3.2 Reimann Hypothesis for Function fields

Let K be a function field over F,. Then, all the roots of (x(s) lie on the line
Re(s) = 1/2. Equivalently, the inverse roots of Pk (p~*) have absolute value

VP

Thus, the Riemann hypothesis for (x(s) = Zx (¢~*) translates into the
statement that the inverse roots of Pk (¢7°) have absolute value ,/p writing

deg Px -
=T ()
=1 P
as Ck(8)=0<= Px(p %) =0<=p * = j_l, j=1,...,deg Px
Then, if Re(s) = 1/2, we have
i (K) ™ = p 2T = |my|pl/2, j=1,...,deg Px
Remark: if K = Fp(X),

Pk (p~°)
(1—p=*)(1-p')

(k(s) =

Ck(s) _ Px (07°)
G(s)  (1=p7°)

and let L(s,x) = Pk (p—*).
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D Multiple Dirichlet Series Theory

D.1 Additive characters of Finite fields

Let e, be the additive character on F,, given by e,(j(modp)) = exp(27ij/p).
We use this to define an additive character e, on F, by

ex(z) = e, (Trp,/r,(z)) (here ¢ = p* (prime power))

By definition, each x € F, induces the additive character e, : F; = C* with

2mi - T, /p(*a:))

ex(z) = exp ( »

where Try/p(z) = E;:(]; z? denotes the trace of Fy on Fp.

D.2 Terminology

q—1

Let pn, = {a € Fy: a™ =1} and let x : F — p, be the character a — a
Let K be the rational function field Fq(¢) with polynomial ring O = F[t]. We
let Koo = Fy((t)) denote the field of Laurent series in ¢~! (the completion of K
at the infinite place) Let deg denote the degree of an element of O. We shall
write T for t~1 when we consider the latter as an element of K. Also, let
Omon denote the set of monic polynomials in O. For z,y € O relatively prime,

(%) denotes the n'® order power residue symbol. We have the reciprocity law
) (2)
y) \z

D.3 Differentials Rings
D.3.1 Places

for x,y monic.

A place of a number tield K is an equivalence class of absolute values on K.An
absolute value is a notion to measure the size of elements x in K. Two
absolute are considered equivalent if they give rise to the same notion of
smallness. The equivalence relation between absolute values |- |o ~ | - |1 is
given by some X € Ry such that |- [o = | - |} meaning we take the value of the
norm | - |1 to the A -th power.

D.3.2 Global rings

A derivation is a map d of a ring R into itself and satisfies the relation

d(a-b) = ad(b) + bd(a). Let K be a number field (of finite degree over Q ) and
let Px be the set of primes or finite places of K, respectively. Then every

p € Pk defines a nonarchimedean valuation | - |, on K with valuation ring O,
valuation ideal P, (or p for short) and with residue field Kp, := O /p. In the
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case Sg C Px is a finite subset of places we use the notation P} := Px\Sx
and OY% is called a global ring.

% = Osy = ﬂ O, CK

pEP)

Now let F//K Dbe a function field of one variable and ¢ € F transcendental over
K. Then F/K(t) is a finite extension. By extending the derivation 9; := 4
from K (t) to F, the field F becomes a differential field (F,dr) . Moreover,
every place p € Px can be uniquely extended to a place 8 or a valuation | - |q
of K(t), respectively, by assuming

n
Z a; ti

=0

:ma.x{|ai|p|i:O,...,n}
B

(GauB extension). The set of places Pr of F lying over any such GauB
extension B of p € Pk is denoted by

Pr =Py r = {Br |Prl|gu =P GauB place over p € Px
®

and is called the set of ¢ -extensions of Pg. (this set is referred to as the set of
t -functional primes of F//K.) Likewise we use the notation

Sr :={Br € Pr |Brlx =p € Sk}

and P := Pr\Sp. Then the intersection

0% = 0g, = n Ogp, CF
mPGPF

Throughout this note a subring O of F with nontrivial derivation 6F|Oiv is
called a global differential ring (global D-ring) if 0 (O%) C O and
orF (“BF) CPBr forall Pr e IP'F

D.4 Global Differentials
D.4.1 Riemann Surface

Given two charts, (U, 1), (U2, p2), on a n-dimensional topological manifold,
such that: Uy N Uz # 0, we get transition maps:

p10@y " o2 (U1 NUz) = @1 (U1 NU3), and

pg0 <p1_1 11 (U NU2) = @3 (Up NUz) Two charts, as above, are called
compatible if the transition maps, as above, are homeomorphisms. If

U1 N Uy = 0, then they are compatible.

A collection of charts that are pairwise compatible and cover X (topological
space) gives rise to a Riemann Surface.
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D.4.2 Local parameter

A complex variable ¢ defined as a continuous function t,, = ¢p, (p) of a point p
on a Riemann surface X, defined everywhere in some neighbourhood V (pg) of
a point pg € X and realizing a homeomorphic mapping of V' (pg) onto the disc
D (po) ={t € C: |t| < r(po)}, where ¢p, (po) = 0.
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