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1 Introduction

1.1 Fundamental Theorem of Arithmetic
Every integer n > 1 can be represented as a product of prime factors in only
one way, apart from the order of the factors. That is every nonzero integer x
can be written as

x =

n∏
i=1

peii , p1 < p2 < . . . < pn primes, n ≥ 0, ei > 0

1.1.1 Greatest common divisor and Least common multiple

If two positive integers x and y have the factorizations

x =

∞∏
i=1

peii , y =

∞∏
i=1

pfii

Then,

gcd(x, y) :=

∞∏
i=1

pgii , where each gi = min {ei, fi}

lcm(x, y) :=

∞∏
i=1

phii ,where each hi = max {ei, fi}

1.1.2 Co-prime

Co-prime or relative prime numbers are those whose gcd is 1.

1.2 Big O-notation, Big Ω-notation
We write

f(x) = O(g(x))if there exist constant C > 0 3 |f(x)| ≤ C|g(x)| for all x

Similarly,

f(x) = Ω(g(x)) if there exist constant C > 0 3 |f(x)| ≥ C|g(x)| for all x

1.3 Abel Summation
Let {an}n = 1∞ be a sequence of complex numbers and f(t) be a differentiable
function for t ≥ 0. Set A(x) =

∑
n≤x an. Then∑

n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt
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Proof : Note: an = A(n)−A(n− 1), x ∈ N.

Therefore
∑
n≤x

(A(n)−A(n− 1))f(n) =
∑
n≤x

A(n)f(n)−
∑

n≤x−1

A(n)f(n+ 1)

=∑
n≤x−1

A(n)f(n)+A(x)f(x)−
∑

n≤x−1

A(n)f(n+1) = A(x)f(x)+
∑

n≤x−1

A(n)(f(n)−f(n+1))

Well: ∑
n≤x−1

A(n)(f(n)− f(n+ 1)) = −
∫ x

1

A(t)f ′(t)dt, t ∈ {n, n+ 1}

This proves the claim.

1.4 Homomorphism, Isomorphism and Automorphism
Two groups, (G, ∗) and (H, ·) is a group homomorphism from (G, ∗) to (H, ·) is
a function f : G→ H 3 ∀ u, v ∈ G it holds that

f(u ∗ v) = f(u) · f(v),

where the left side is from G and right from H. Here, f preserves group
operations
A group homomorphism that is bijective; i.e., injective(preserves distinctness)
and surjective is an Isomorphism.(reaches every point in the codomain)
A group homomorphism where the domain and codomain are the same is
called a Automorphism.
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2 Functions

2.1 Analytic, Multiplicative and Meromorphic functions
Analytic functions: The following are equivalent conditions for a function to
be analytic:

(1): If f is differentiable at each point of the domain D then f is called
analytic in D; in this case, the derivative function is defined by

f ′(z) = lim
h→0

f(z + h)− f(z)

h

(2):f can be represented as a power series iff it is analytic.
(3):The Cauchy-Riemann conditions are necessary and sufficient conditions for
a function to be analytic at a point. Let f = u(x, y) + iv(x, y), if f satisfies

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y

then f is analytic.

Multiplicative functions:

1) An arithmetical function is a map f : N −→ C
2) The function f is called multiplicative if
f(nm) = f(n)f(m) ∀ n,m ∈ N where n,m are co-prime.
3) The function f is completely or totally called multiplicative if
f(nm) = f(n)f(m) ∀ n,m ∈ N where n,m need not be co-prime

Meromorphic functions:

Complex functions which can be expressed as ratio of two analytic functions
are called meromorphic functions.
Facts: Suppose f(z) is a meromorphic function at z0, f(z) admits an
expansion of the form,

f(z) =
f−R

(z − z0)R
+ . . .

f−2

(z − z0)2
+

f−1

(z − z0)1
+ f0 + . . . f1(z − z0) + . . .

and is said to have a pole of order R at z0.The coefficient of f−1 is said to be
the residue of f(z) at z0, written as Rez=z0 f(z). Therefore we can rephrase
the defintion of meromorphic function to be, a function f(z) is meromorphic
iff it is analytic everywhere except for its isolated singularities ie poles.

2.2 Divisor Function (τ(n)) and Divisor Sum Function
(σ(n))

τ : N→ N, τ(n) := number of positive divisors of n. Example τ(p) = 2 for
primes p, τ(10) = 4.
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σ : N1 → N1, σ(n) := sum of all positive divisors of n.Thus σ(p) = 1 + p for
primes p, σ(10) = 18.

2.3 Möbius function (µ(n))
µ : N→ Z. This important function is defined by

µ(n) :=


1, for n = 1

0, if there exists a prime p with p2 | n
(−1)r, if n is a product of r different primes

Examples µ(3) = −1, µ(7) = −1, µ(8) = µ(23) = 0(22|82), µ(6) = 1
Basic Properties:
The function µ(n) is multiplicative ie

µ(mn) = µ(m)µ(n), gcd(m,n) = 1

Proof :Let m = p1p2 . . . ps where p1, p2, . . . , ps are distinct primes and
n = q1q2 . . . qt where q1, q2, . . . , qt are distinct primes. Since gcd(m,n) = 1,
then there are no common primes in the prime decomposition between m and
n. Thus

µ(m) = (−1)s, µ(n) = (−1)t and µ(mn) = (−1)s+t by definition of function.

Therefore,
µ(mn) = (−1)s+t = µ(m)µ(n)

Theorem: If n ≥ 1 we have∑
d|n

µ(d) =
[

1/n
]

=

{
1 if n = 1,
0 if n > 1.

where d runs through the positive divisors of n.
Proof: Define F (n) =

∑
d|n µ(d) since µ(d) is multiplicative it implies F (n) is

multiplicative. Also, for n ≥ 1,let n = pe11 p
e2
2 . . . pekk , where p1, p2, . . . , pk are

distinct primes.Now F (n) = F (pe11 p
e2
2 . . . pekk ), since F is multiplicative this

gives us F (n) = F (pe11 )F (pe22 ) . . . F (pekk ). Now F (peii ) =
∑
d|peii

µ(d). Since d is
a divisor of peii therefore d ∈ {1, pi, p2

i ....p
ei
i }. This gives

us,F (peii ) =
∑
d|peii

µ(d) = µ(1) + µ(pi) + µ(p2
i ) + . . .+ µ(peii ) =

1 +−1 + 0 + 0 + 0 . . .+ 0 = 0.Therefore, F (peii ) = 0 for n ≥ 1.For
n = 1, e1 = e2 = . . . ek = 0 giving us F (1) =

∑
d|1 µ(d) = µ(1) = 1.

2.4 Von-Mangoldt Function (Λ(n))

Λ(n) :=

{
log(p) if n = pk for some prime p and integerk ≥ 1
0 otherwise

Example Λ(1) = 0,Λ(8) = Λ(2) = log(2),Λ(3) = log(3).
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Write n = pe11 p
e2
2 . . . pekk , taking log on both sides gives us,

log(n) = e1 log(p1) + e2 log(p2) + . . . ek log(pk) (unique factorisation), which is
the same as

log(n) =
∑
d|n

Λ(d)

.

2.5 Chebyshev Function (ψ(x))

ψ(x) :=
∑
n≤x

Λ(n)

Chebyshev’s result: Let ψ(x) :=
∑
p≤x log p (where p is prime).Then

ψ(x) ≤ 2n ln 2

Proof: We know,(1 + 1)2m+1 =
∑2m+1
j=0

(
2m+ 1

j

)
Let

M=
(

2m+ 1
m

)
,2M ≤ 22m+1 =⇒ M ≤ 22m · · · (1) .

Now, M = (2m+1)!
(m)!(m+1)! , every prime in the interval (m+ 1, 2m+ 1] appears in

the numerator. Then ∏
m+1<p≤2m+1

p |M · · · (2)

Taking log on both sides and combining (1) and (2), gives us∑
m+1≤p≤2m+1

log p ≤ logM ≤ 2m ln 2

Therefore , ψ(2m+ 1)− ψ(m+ 1) ≤ 2m ln 2
Now we can proceed with induction, for m = 1 we get left hand side,
log 3 ≤ log 4 on the right hand side which is true. Now assume the inequality
is true ∀m ≥ 1 upto m− 1.
We need to show ψ(2m+ 1)− ψ(m+ 1) < 2(m) log 2. Now

ψ(2m+ 1) < ψ(m+ 1) + 2m log 2 =⇒ 2(m+ 1) log 2 + 2m log 2 =⇒

( By inductive hypothesis )

< 2(2m+ 1) log 2
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3 Dirichlet Series

3.1 Dirichlet series introduction
The Dirichlet series is any series of the form

D :=

∞∑
n=1

an
ns

and the riemann zeta function is one case of the dirichlet series. The Riemann
zeta function can be expressed as:

ζ(s) =

∞∑
n=1

1

ns

Euler claimed:

ζ(s) =
∏
p

∞∑
k=0

1

pks
=
∏
p

1

1− p−s
, where p is prime . . . (α)

Proof:
ζ(s) = 1 +

1

2s
+

1

3s
+

1

4s
+

1

5s
+ . . .

Dividing by 1
2s we get,

1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
+

1

10s
+ . . .

Subtracting the second equation from the first we remove all elements that
have a factor of 2 :(

1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+

1

11s
+

1

13s
+ . . .

Repeating for the next term and subtracting in a similar fashion for all primes
gives us:

. . .

(
1− 1

11s

)(
1− 1

7s

)(
1− 1

5s

)(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1

Dividing both sides by everything but the ζ(s) we obtain:

ζ(s) =
1(

1− 1
2s

) (
1− 1

3s

) (
1− 1

5s

) (
1− 1

7s

) (
1− 1

11s

)
. . .

=
∏

p prime

1

1− p−s

Claim: The Riemann zeta function converges for Re(s) > 1.

Proof: For s > 1, s ∈ R, ζ(s) converges and this can be checked by the Integral
criterion which states that if f ≥ 0 monotone decreasing on [a,∞) where
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a ∈ N. Then
∫∞
a
f(x)dx converges if and only if the infinite series

∑∞
n=a f(n)

converges. Taking f(x) = 1/xs,solving this integral gives us 1
s−1 which

converges (s > 1). What about s ∈ C? if s = σ + it, we
have,|ns| =

∣∣es lnn
∣∣ =

∣∣eRe(s) lnn
∣∣ = nσ. Here ,

∣∣ei lnn)
∣∣ = 1 as lnn ∈ R, n ∈ N.

Consider Re s > 1,
∞∑
n=1

∣∣∣∣ 1

ns

∣∣∣∣ =

∞∑
n=1

1

nσ

and since Re s > 1, the series on the right converges. Thus
∑∞
n=1

1
ns converges

absolutely in Re s > 1

3.2 Analytic continuation of riemann zeta function
Definition: If f(s) is analytic in a region X and g(s) is analytic in a region Y
and X ⊆ Y , f(s) = g(s) ∀s ∈ X we say g is a analytic continuation of f .
Therefore applying Abel summation to

∑
n≤x

1
ns gives us

=
[x]

xs
+ s

∫ x

1

[t]

ts+1
dt where an = 1, f(n) =

1

ns

Let x→∞,

ζ(s) =

∞∑
n=1

1

ns
=

∫ ∞
1

[t]

ts+1
dt

= s

∫ ∞
1

t− {t}
ts+1

dt, {t} = fractional part

=
s

s− 1
− s

∫ ∞
1

{t}
ts+1

dt

, RHS is analytic for Re(s) > 0 except for s = 1 where it has a simple pole.

We know the log power series expansions, log(1 + x) =
∑∞

1
−xn
n

Also since ζ(s) is analytic in the region Re(s) > 1,taking log of (α) gives us
log(ζ(s)) = −

∑
p log(1− 1

ps ) =
∑
p

1
npns where p is prime,n ≥ 1.

Differentiating both sides gives us,

ζ ′(s)

ζ(s
= −

∑
p

1

pns
=⇒ −ζ

′(s)

ζ(s)
=

∞∑
n=1

Λ(n)

ns

Claim:

−ζ
′(s)

ζ(s)
=

∞∑
n=1

Λ(n)

ns
= s

∫ ∞
0

e−sxψ(ex)dx

s

∫ ∞
0

e−sxψ (ex) dx = s

∫ ∞
0

e−sx

∑
n≤ex

Λ(n)

 dx = s

∞∑
n=1

Λ(n)

∫ ∞
logn

e−sxdx

= s

∞∑
n=1

Λ(n)

[
−1

s
e−sx

]∞
logn

=

∞∑
n=1

Λ(n)

ns
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3.3 Dirichlet characters
We say that a function χ from the integers Z to the complex numbers C is a
Dirichlet character if it has the following properties:

(1)There exists a positive integer k such that χ(n) = χ(n+ k) for all integers n.
(2)If gcd(n, k) > 1 then χ(n) = 0; if gcd(n, k) = 1then χ(n) 6= 0.
(3)χ(mn) = χ(m)χ(n)∀ integers m and n.

Principle character (χ0):

χ0(n) =

{
1 if (n, k) = 1
0 if (n, k) 6= 1

If χ(n) is a Dirichlet character (modk), the complex conjugate function χ̄(n)
is also a Dirichlet character (modk);

χφ(k)(n) = χ0(n)

The smallest positive number ν that satisfies the equation χν(n) = χ0(n) is
called the order of the Dirichlet character.

Orthogonal relation: (i)For any two Dirichlet charactersχ1, χ2 modulo k we
have

k∑
n=1

χ1(n)χ2(n) =

{
φ(n) if χ1 = χ2,
0 otherwise

(ii)For any Dirichlet character χ modulo k we have

k∑
n=1

χ(n) =

{
φ(k) if χ = χ0

0 otherwise

where χ0 is the principal character modulo k. Proof:(i) If χ1 = χ2 then
χ̄2(n) = χ1(n)−1 and the sum is equal to φ(k). Assume that χ1 6= χ2. Then
there is at least one element m such that χ1(m) 6= χ2(m). Let
F =

∑
χ1(n)χ̄2(n). Now, the product mn runs through A when n does, and

therefore one has

F =
∑

χ1(mn)χ̄2(mn) = χ1(m)χ̄2(m)
∑

χ1(n)χ̄2(n) = χ1(m)χ̄2(m)F

Therefore F = 0, since χ1(m)χ̄2(m) = χ1(m)χ2(m)−1 6= 1. (ii) if we put
consider χ = χ1χ2 we get the result.

3.4 Dirichlet L-series
Let χ : N→ C be a Dirichlet character. The L -series associated to χ is the
Dirichlet series

L(s, χ) :=

∞∑
n=1

χ(n)

ns
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This series converges absolutely for every s ∈ C with Re(s) > 1.

Theorem. Let χ : N→ C and

L(s, χ) :=

∞∑
n=1

χ(n)

ns

(1) Then we have the euler product representation

L(s, χ) =
∏

p-prime

( ∞∑
k=0

χ
(
pk
)

pks

)
=

∏
p-prime

(
1 +

χ(p)

ps
+
χ
(
p2
)

p2s
+
χ
(
p3
)

p3s
+ · · ·

)

(2) Since χ is completely multiplicative, (1) is simplified to

L(s, χ)χ =
∏

p-prime

(
1− χ(p)

ps

)−1

Proof. Since χ is multiplicative, we have for an integer n with prime
decomposition n = pk11 p

k2
2 · . . . · pkrr

χ(n) = χ
(
pk11

)
χ
(
pk22

)
. . . χ

(
pkrr
)

It follows by multiplying the infinite series term by term that (in a similar
fashion how Euler claimed (α),

∏
p−prime

(
1 +

χ(p)

ps
+
χ
(
p2
)

p2s
+
χ
(
p3
)

p3s
+ · · ·

)
=
∑
n

χ(n)

ns

For part (2), since χ is completely multiplicative, χ
(
pk
)

= χ(p)k, hence

∞∑
k=0

χ
(
pk
)

pks
=

∞∑
k=0

(
χ(p)

ps

)k
=

(
1− χ(p)

ps

)−1

=

(
1

1− χ(p)ps

)

12



3.5 Critical Strip, Line and the Riemann Hypothesis

Critical Strip (blue shaded region) and line(red line).

Riemann Hypothesis:
For s in the critical strip, ζ(s) = 0⇒ σ = Res(s) = 1/2

3.6 Gamma Function
The gamma function is defined as:

Γ(s) =

∫ ∞
0

xs−1e−x dx

3.6.1 Relationship between Gamma and zeta function

Consider the gamma function:

Γ(s) =

∫ ∞
0

ts−1e−tdt

Subsitute t = nx in the integral to arrive at

Γ(s)

ns
=

∫ ∞
0

e−nxxs−1dx

which we then sum up to get

Γ(s)ζ(s) =

∫ ∞
0

xs−1

ex − 1
dx

3.6.2 Completed Zeta function

The completed zeta function is as follow:

ξ(s) =
1

2
π−

s
2 s(s− 1)Γ

(s
2

)
ζ(s)

13



4 Weiner-Ikehara Theorem (X) and PNT

4.1 Theorem Weiner-Ikehara
Let A(x) be a non-negative, monotonic nondecreasing function of x, defined
for 0 ≤ x <∞. Suppose that

f(s) =

∫ ∞
0

A(x)e−xsdx

converges for <(s) > 1 to the function f(s) and that, for some non-negative
number c,

f(s)− c

s− 1

has an extension as a continuous function for Re(s) ≥ 1. Then the limit as x
goes to infinity of e−xA(x) is equal to c.

4.2 Lemma 1
an ≥ 0. Let A(x) =

∑
n≤x an.

If
∫∞

1
A(x)−x
x2 dx <∞ then A(x) ∼ x, an x→∞.

Proof: Suppose not, ie ∃ q 3 A(xi) ≥ qxi ∀ xi
Then ∫ qxi

xi

A(t)− t
t2

dt ≥
∫ qxi

xi

A(xi)− t
t2

dt ≥
∫ qxi

xi

q(xi)− t
t2

dt

Set t = xiu, this gives us∫ qxi

xi

q(xi)− t
t2

dt =

∫ q

1

q − u
u2

du = c(q) > 0

But, qxi ≤ ∞ =⇒
∫ qxi
xi

A(t)−t
t2 dt ≤ ε, A contradiction.

4.3 Lemma 2
Suppose an ≥ 0 A(x) =

∑
n an. If the Dirichlet series D =

∑∞
n=1

an
ns

converges absolutely for Re(s) > 1, and admits an analytic continuation for
Re(s) ≥ 1 except for a simple pole at s = 1,then A(x) ∼ x as x→∞.

Proof: We have

D = s

∫ ∞
1

A(x)

sx+1
dx ( from section 3.2 )

Now,

D(s)− s

s− 1
= s

∫ ∞
1

A(x)− x
xs+1

dx =⇒ D(s+ 1)

(s+ 1)
− 1

s
=

∫ ∞
1

A(x)− x
xs+2

dx

14



Let x = et,

D(s+ 1)

(s+ 1)
− 1

s
=

∫ ∞
0

(A(et)− et)et

et(s+2)
dt =

∫ ∞
0

(A(et)− et)e−st

e−t
dt

Applying Theorem X, we get the result desired.

4.4 Prime Number Theorem(PNT)
Let π(x) =primes ≤ x or in other words

∑
p≤x 1. This function is called the

prime counting function. Example: π(17) = 7,π(83) = 24

PNT states that π(x) and x/ lnx are asymptotically equivalent ie

lim
x→∞

π(x)

x/ lnx
= 1

4.4.1 Proof

The integral
∫∞

0
e−sxψ (ex) dx converges for Re(s) > 1 and equals − ζ(s)

sζ(s) . the

function s 7→ − ζ
′(s)
ζ(s) −

1
s−1 has a continuous extension to Re(s) ≥ 1.

Also, Λ ≥ 0, the function ψ(x) =
∑
n≤x Λ(n) is non-decreasing.

Now Theorem X gives ψ (ex) ∼ ex as x→∞, and therefore ψ(x) ∼ x. Since
we showed ψ(x) ∼ x, ψ(x) ∼ x =⇒ π(x) ∼ x/ lnx,
because

ψ(x) =
∑
n≤x

Λ(n) =
∑
p≤x

log p ≤ log x
∑
p≤x

1 = log(x)π(x)

.Dividing by x on both sides gives us (3) Consider S(x)/x,∑
x1−ε≤p≤x

ln p ≥ ln(x1−ε)(π(x)− π(x1−ε)(ε ∈ (0, 1)

Rearraging gives ,

ψ(x) + (1− ε)(ln(x1−ε) ≥ ψ(x) + (1− ε)(ln(x))(π(x1−ε) ≥ (1− ε ln(x)π(x)

Dividing by x and taking limit gives us, 1 ≥ limx→∞(1− ε) π(x)
x/ ln x (Here

limx→∞
ψ(x)
x =1 proved above ).Since ε was arbitrary limx→∞

π(x)
x/ ln x = 1.
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5 Modular Forms
The modular group, sometimes denoted Γ(1), is

SL(2,Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

The upper half plane is h2 = {z ∈ C : Im(z) > 0}. We can define an action of
Γ(1) on h2 as follows (

a b
c d

)
· z =

aτ + b

cτ + d
.

Lemma: Let f =

(
a b
c d

)
∈ SL(2,Z). Then,Im(fz) = Im(z)

|cz+d|2 .

Proof. Observe that

f(z) =
az + b

cz + d

=
(az + b)(d+ cz̄)

|cz + d|2

=
bd+ ac|z|2 +Re(z)(ad+ bc) + i(ad− bc) Im(z)

|cz + d|2

=
bd+ ac|z|2 + Re(z)(ad+ bc) + i Im(z)

|cz + d|2

Hence, Im(fz) = Im(z)
|cz+d|2 .

Definition: A modular form of weight k for the modular group

SL(2,Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
is a complex-valued function f on the upper half-plane
h2 = {z ∈ C : Im(z) > 0}, satisfying the following three conditions:

1. f is a holomorphic function on h2.
2. For any z ∈ h2 and any matrix in SL(2,Z) as above, we have:

f

(
az + b

cz + d

)
= (cz + d)kf(z)

3. As z → i∞, f(z) is bounded.

16



Thereom: SL(2,Z) is generated by S and T where S =

(
0 −1
1 0

)
and

T =

(
1 1
0 1

)
Proof: Observe that Tn =

(
1 n
0 1

)
, n ∈ Z.

Tn
(
a b
c d

)
=

(
1 n
0 1

)(
a b
c d

)
=

(
a+ nc b+ nd
c d

)
and S2 = −I.

S

(
a b
c d

)
=

(
−c −d
a b

)
· · · (α)

If g =

(
a b
c d

)
∈ SL(2,Z)

Case (1):Suppose c = 0

ad = 1⇒ a = d = ±1 =⇒ g =

(
1 b′

0 1

)
=

 T b
′

or
S2T ′

Case (2): Suppose c 6= 0. WLOG, we can suppose |a| ≥ |c| (in terms of (α)).
By the division algorithm we can wite a = cq + r 0 ≤ r < |c|

T−q
(
a b
c d

)
=

(
1 −q
0 1

)(
a b
c d

)
=

(
a− c1 b− qd
c d

)
Repeating this in an iterative procedure which after a finite number of steps
leads to case 1.

5.1 Example
Let s > 2 be an even integer. Then the Eisenstein series of weight s is a
function on h2, defined, for z ∈ h2, by

G(z, s) =
∑

(m,n)∈Z2\{0,0}

1

(mz + n)s

5.2 Fundamental domain
Fundamental domain for the upper halfplane h2 under the action of SL(2,Z)
is a set F containing the representative of each orbit of h2 under SL(2,Z).

Lemma: Fix z ∈ h2. The set (m,n) ∈ Z2 \ (m,n) 6= (0, 0) such that
|mz + n| ≤ 1 is finite and non empty.

17



Proof: Let z = x+ iy, |mz + n| ≤ 1 ⇐⇒ (mx+ n)2 + (my)2 ≤ 1 =⇒
(my)2 ≤ 1 =⇒ |m| < 1√

y , m is bounded.
Also |mz + n| ≤ =⇒ −1 ≤ mz + n ≤ =⇒ −1−mx ≤ n ≤ 1−mx,n is
bounded. Also, substituting (m,n) = (0, 1) is example of it being non empty.

Claim: Every Γ(1) -orbit in h2 has a representative in

F =

{
z ∈ h2 : |z| ≥ 1, |Re(z)| ≤ 1

2

}
where F is the fundamental domain for SL(2,Z) acting on h2.

Proof: Let γ =

(
k l
m n

)
∈ SL2(Z).

Im(γz) =
Im(z)

|mz + n|2

As (m,n) 6= (0, 0),we see that |mz + n| attains a minimum as γ varies over
SL(2,Z) (using lemma) .Now choose |mz + n| to be minimina l, therefore
Im(γz) is maximal for γ ∈ SL2(Z)
By translation we can ensure |x| ≤ 1

2

Now we claim γz ≥ 1. Suppose not, ie γz < 1. Consider S =

(
0 −1
1 0

)
where S acts on γz to yield S(γz) = −1

γz , Also

Im(
−1

γz
) =

Im(γz)

|γz|2

Therefore,

Im(Sγz) =
Im(γz)

|γz|2
> Im(γz) (γz < 1)

Contradiction! (as Im(γz) was assumed to be maximal).
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6 Non-Holomorphic Eisenstein series
Definition: Let z ∈ h2,<(s) > 1. We define the Eisenstein series.

E(z, s) :=
1

2

∑
m,n∈Z

(m,n)=1

ys

|mz + n|2s

where h2 = GL(2,R)/(O(2,R), and GL(2,R) is the symmetric space and
O(2,R) is the rotation space.

6.1 Convergence

E(z, s) = Es(z) =
1

2

∑
gcd(m,n)=1

ys

|mz + n|2s
=

1

2
ys

∑
gcd(m,n)=1

1

[(mx+ n)2 + (my)2]
s

Since Es is Γ(1) -invariant, it suffices to consider z in a fixed compact set X
inside the usual fundamental domain{

z = x+ iy ∈ h2 : |z| ≥ 1,−1

2
≤ x ≤ 1

2

}
For such z,

(mx+n)2+(my)2 =
(
x2 + y2

)
m2+2x·mn+n2 ≥ m2−|mn|+n2 ≥ 1

2

(
m2 + n2

)
Also, the sum over coprime (m,n) is mainly by the sum over all
(m,n) 6= (0, 0). Thus, ∑

(m,n)∈Z\(0,0)

1

(m2 + n2)
Re(s)

Now for Re(s) > 1, the function f(m,n) = 1
m2+n2 is ≥ 0 and monotone

decreasing. Therefore by integral criteria consider the integral∫∫
Z2\(0,0)=D

dmdn

(m2 + nn)s

Let m = r cos θ and n = r sin θ,
The Jacobian Matrix

J(r, θ) =
∂(m,n)

∂(r, θ)
=

∣∣∣∣ mr mθ

nr nθ

∣∣∣∣
=

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣
= r cos2 θ + r sin2 θ

= r.
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Therefore dmdn = rdrdθ,∫∫
D′

J(r, θ)drdθ

r2s
=

∫∫
D′
r1−2sdrdθ =

∫
r2−2s

2− 2s
dθ =

θ · r2−2s

2− 2s

∣∣∣∣
D′

which converges for all Re(s) > 1 and how r is defined.

6.2 Theorem
The Eisenstein series E(z, s) has the Fourier expansion

E(z, s) = ys + φ(s)y1−s +
2πs
√
y

Γ(s)ζ(2s)

∑
n 6=0

σ1−2s(n)|n|s− 1
2Ks− 1

2
(2π|n|y)e2πinx

where

φ(s) =
√
π

Γ
(
s− 1

2

)
Γ(s)

ζ(2s− 1)

ζ(2s)

and
σs(n) =

∑
d|n
d>0

ds,

and
Ks(y) =

1

2

∫ ∞
0

e−
1
2y(u+ 1

u )us
du

u
.

I will show

φ(s) =
√
π

Γ
(
s− 1

2

)
Γ(s)

ζ(2s− 1)

ζ(2s)

Proof: First note that

ζ(2s)E(z, s) = ζ(2s)ys +
∑
c>0

∑
d∈Z

ys

|cz + d|2s

If we let δn,0 =

{
1 n = 0
0 n 6= 0,

and d = mc+ r, it follows that

ζ(2s)

∫ 1

0

E(z, s)e−2πinxdx

This gives us

= ζ(2s)ysδn,0 +

∞∑
c=1

c−2s
c∑
r=1

∑
m∈Z

∫ 1

0

yse−2πinx∣∣z +m+ r
c

∣∣2s dx
Implying,

= ζ(2s)ysδn,0 +

∞∑
c=1

c−2s
c∑
r=1

∑
m∈Z

∫ 1+m+ r
c

m+ r
c

yse−2πin(x− rc )

|z|2s
dx
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=⇒

= ζ(2s)ysδn,0 +

∞∑
c=1

c−2s
c∑
r=1

e
2πinr
c

∫ ∞
−∞

yse−2πinx

(x2 + y2)
s dx

∴

ζ(2s)

∫ 1

0

E(z, s)e−2πinxdx = ζ(2s)ysδn,0 + σ1−2s(n)y1−s
∫ ∞
−∞

e−2πinxy

(x2 + 1)
s dx

Dividing both sides by ζ(2s)

∫ 1

0

E(z, s)e−2πinxdx = ysδn,0 +
σ1−2s(n)y1−s ∫∞

−∞
e−2πinxy

(x2+1)s dx

ζ(2s)

Now need to show ,

φ(s) =
√
π

Γ
(
s− 1

2

)
Γ(s)

ζ(2s− 1)

ζ(2s)

Part (1) : σ1−2s(0) = ζ(2s− 1)

Well, σ1−2s(n) = σs(n) =
∑

d|n
d>0

ds therefore ,

σ1−2s(0) =
∑
d|0
d>0

d1−2s

=⇒

σ1−2s(0) =
∑
d|0
d>0

d1−2s =

∞∑
d=1

d1−2s =

∞∑
d=1

1

d2s−1
= ζ(2s− 1)

Part (2) :
∫∞
−∞

e−2πixy

(x2+1)s dx =


√
π

Γ(s− 1
2 )

Γ(s) if y = 0

2πs|y|s−
1
2

Γ(s) Ks− 1
2
(2π|y|) if y 6= 0

Consider the case when y = 0,

Γ(s)

∫ ∞
−∞

e−2πixy

(x2 + 1)
s dx =

∫ ∞
0

∫ ∞
−∞

e−u−2πixy

(
u

1 + x2

)s
dx
du

u
. . . (a)

=

∫ ∞
0

e−uus
∫ ∞
−∞

e−ux
2

e−2πixydx
du

u
. . . (b)

Here (a) is such by the defintion of Γ(s).
Plugging y = 0 in (b) gives us,

Γ(s)

∫ ∞
−∞

1

(x2 + 1)
s dx =

∫ ∞
0

e−uus
∫ ∞
−∞

e−ux
2

.1dx︸ ︷︷ ︸
A

du

u
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Consider the gaussian integral, ∫ ∞
−∞

ex
2

dx

Computing the above integral,

I2 =

(∫ ∞
−∞

e−x
2

dx

)2

=

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy

=⇒
I2 =

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)dxdy

Now let,
x = r cos θ, y = r sin θ

therefore
r2 = x2 + y2

=⇒
I2 =

∫ ∞
0

∫ 2π

0

e−r
2

rdrdθ

=

= 2π

∫ ∞
0

re−r
2

dr

=

= 2π

∫ 0

−∞

1

2
esds , s = −r2

=

= π

∫ 0

−∞
esds

=
= π

(
e0 − e−∞

)
=

= π

=
I =
√
π

Taking x = m√
u
in the gaussian integral gives us A =

√
π
u

Thereofore (b) becomes

Γ(s)

∫ ∞
−∞

1

(x2 + 1)
s dx =

∫ ∞
0

e−uus
√
π

u

du

u
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=

Γ(s)

∫ ∞
−∞

1

(x2 + 1)
s dx =

∫ ∞
0

e−uus
√
π

u

du

u

=
√
π

∫ ∞
0

e−uus−1− 1
2 du

=

Γ(s− 1

2
) =⇒

∫ ∞
−∞

1

(x2 + 1)
s dx =

Γ(s− 1
2 )

Γ(s)

Therefore,

φ(s) =
√
π

Γ
(
s− 1

2

)
Γ(s)

ζ(2s− 1)

ζ(2s)
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7 Function fields
Let p power of a prime, Fp finite field .

Analogy between Number and Function fields:

Q ∼ Fp(t)

Z ∼ Fp[t]

p prime ∼ p(t) monic irreducible polynomial

|n| = Z/nZ ∼ |f | = Fp[t]/(f) = pdeg f

ζ(s) =

∞∑
n=1

1

ns
∼ ζFp[t](s) =

∑
f∈Fp[t]

1

|f |s

Equation A:

ζFp[t](s) =
∑

f∈Fp[t]

1

|f |s
=

∏
p∈Fp[t]

irred,monic

(
1− 1

|p|s

)−1

Proof: By the division algorithm f(t) can be expressed a product of
irreducible polynomials. Also this factorisation is unique as if

f(t) = p1(t)p2(t) · · · pm(t) and f(t) = q1(t)q2(t) · · · qn(t)

with p1(t), . . . , pm(t) and q1(t), . . . , qn(t) all irreducible. We then have

q1(t)q2(t) · · · qn(t) = p1(t) (p2(t) · · · pm(t)) (1)

Thus
p1(t) | q1(t) · · · qn(t)

p1(t) must divide at least one of the qi(t). By reordering the qi(t) we can
assume without loss of generality that p1(t) | q1(t). But since q1(t) is by
irreducible,

q1(t) = c1p1(t) , for some c1 ∈ Fp (2)

Substituting (2) into the left hand side of (1) and then dividing both sides by
p1(t) yields

c1q2(t) · · · qn(t) = p2(t) (p3(t) · · · pm(t))

Repeating gives us,

c1c2q3(t)q4(t) · · · qn(t) = p3(t)p4(t) · · · pm(t) (3)
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We can continue in this manner to remove irreducible factors from both sides
of (3). This yields us,

c1c2c3 · · · = pm+1(t)pm+2(t) · · · pn(t)

But the left side are constants and right monic polynomials. Contradiction.

Now back to A, Expand the terms on the right into a geometric sum. Since
each f ∈ Fp[t] has a unique factorisation and can be written uniquely as a
product of monic irreducible polynomials. Every monic polynomial f will
appear as a product of these geometric sums. Q.E.D

Equation B:

ζFp[t](s) =

∞∑
n=0

# of monic polys of deg n
pns

=
1

1− p1−s

Proof: In the expansion of the left side of equation A, we can reorder the
expansion and grouping degree n terms together.
Claim: There are exactly pn terms of degree n in Fp[t]. Proof: Take the case
where n = 2 ie quadratic polynomial. The polynomial is of the form
x2 + bx+ c and b and c can take values {0, 1, 2, · · · p− 1}. Therefore all the
possible values/combinations of b and c are p2. Similarly with the other cases.
Now equation B, we can write

ζFp[t](s) =

∞∑
n=0

∑
deg(F )=n

1

pns
=

∞∑
n=0

pn

pns
=

1

1− p1−s ,

Q.E.D

Equation C:
The completed zeta function in Fp[t] is defined as

ξ(s) =
1

1− p−s
ζFp[t](s)

then
ξ(s) = p2s−1ξ(1− s)

Proof: Well the left side is just

1

1− p−s
.

1

1− p1−s

by def of ξ. The right side after some calculations becomes,

p2s−1 1

1− ps−1
.

1

1− ps
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By multiplying the left side by p2s−1 and after some simplifications the
LH=RH=

p2s−1

p2s−1 − ps−1 − ps + 1

Q.E.D

7.1 Ideals
Ideals in Fp[t]: Given any polynomial f(t) ∈ Fp[t] let
(f) := {g(t)f(t) | g(t) ∈ Fp[t]}. The same is analogous in Z where (n) is
multiples of n.

Analogy in Fp[t],
Fp[t]/(f) := {0̄, t̄, · · · t̄n−1}

Where f monic,|f | = pdeg f ,deg f = n,t̄i = ti + (f)

Check: i j = ijand ī+ j̄ = i+ j

Proof: Let i, j ∈ Z for simplification. It translates to the Fp[t] case in the same
way. Now,

i = {i+ n | i, n ∈ Z} and j = {i+ n | j, n ∈ Z}
Therefore,

i+ j = i+ j + nmodn = i+ j

Similarly,
i j = ij + in+ jn+ n2 modn ≡ ij + nmodn = ij

Fp[t]/(f) is a ring as all the properties of the ring Fp[t] just carry over to
Fp[t]/(f) as its operations over the representatives.

Claim:If f(t) is irreducible and monic then Fp[t]/(f) is a field.

To show this I will first show, if
gcd(f, g) = 1 then there exists p(t) and q(t) such that f.p+ q.g = 1
Proof:

Let m(t) = gcd(f, g)

Then m(t) | f and m(t) | g ⇒
m(t)|fp,m(t)|gq and m(t)|fp+ qg = 1⇒ m(t)|1⇒ m(t) = 1

Back to the claim,
Proof: It is sufficient to show that any arbitrary element
(g(t)) + d(t) ∈ Fp[t]/(f) has an inverse ie ((g(t)) + d(t)).h(t) = 1
Now consider d(t) 3 d(t) /∈ (g(t)), therefore gcd(g, d) = 1. By claim,

∃b(t), a(t) 3 g(t)a(t) + d(t)b(t) = 1
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Rearranging,
d(t)b(t) = (−q(t))a(t) + 1 ∈ (q(t)) + 1.

Thus
((q(t) + d(t))((q(t)) + b(t)) = (q(t) + d(t)b(t) = (q(t)) + 1

Therefore ((q(t) + d(t)) is invertible . Since ((q(t) + d(t)) was arbitrary it
shows that Fp[t]/(f) is a field. Q.E.D

7.2 Quadratic reciprocity
Take f, g ∈ Fp[t] monic, square free and relatively prime. Then(

f

g

)
=

(
g

f

)
where (.) is the Legendre symbol defined as(

f

g

)
= g

|f|−1
2 (modf) = χf (g), |f | = pdeg f

7.2.1 Fermat’s Little theorem:

If p is a prime number then ap ≡ a(modp) for all a ∈ Z .

Proof: We will work over the Z/nZ field to make the calculations simpler. If
a = 0, then we clearly have ap ≡ a mod p. So we assume that a 6= 0. Then
ā = a+ (p) ∈ (Z/pZ). Let H be a subgroup of (Z/pZ) generated by ā. Then
the order of the subgroup H is the order of the element ā. By Lagrange’s
Theorem, the order |H| divides the order of the group (Z/pZ), which is p− 1.
So we write p− 1 = |H|m for some m ∈ Z. Therefore, we have

āp−1 = ā|H|m = 1
m

= 1

Multiplying both sides by a gives us the desired result. Q.E.D

Claim: (
f

g

)
≡ g

|f|−1
2 (modf) = ±1, when gcd(f, g) = 1

Proof: From the analog of Fermat’s Little theorem, we get

g|f |−1 ≡ 1 mod f, hence 0 ≡ g|f |−1 − 1 =
(
g(|f |−1)/2 − 1

)(
g(|f |−1)/2 + 1

)
,

and since f is irreducible,monic we conclude that g(|f |−1)/2 ≡ ±1 mod f.
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7.3 L-series
For f monic and square-free, define the L -series:

L (s, χf ) =
∏

p(t)monic,irred

(
1− χf (p)

|p|s

)−1

=
∑

gmonic,g(t)6=0

χf (g)

|g|s

Completed L -series by

L∗ (s, χf ) =

{ 1
1−p−sL (s, χf ) if deg f even
L (s, χf ) if deg f odd.

Functional equation:

L∗ (s, χf ) =

{
p2s−1|f |1/2−sL∗ (1− s, χf ) if deg f even
p2s−1(p|f |)1/2−sL∗ (1− s, χf ) if deg f odd.

Proposition: Let χ be a non-trivial Dirichlet character modulo f . Then,
L(s, χf ) is a polynomial in p−s of degree at most deg(f)− 1.

Proof. Define
A(n, χf ) =

∑
deg(g)=n

χ(g)

f monic It is clear from the definition of L(s, χ) that

L(s, χf ) =

∞∑
n=0

A(n, χ)p−ns.

if we can show that A(n, χ) = 0 for all n ≥ deg(f) then the result will holds.
Let’s assume that n ≥ deg(m). If deg(g) = n, we can write g = hf + r where r
is a polynomial of degree less than deg(f) or r = 0. Here, h is a polynomial of
degree= n− deg(f) ≥ 0. All monic polynomials of degree n ≥ deg(f) can be
uniquely written in this fashion. Since χ is periodic modulo f and since h can
be chosen in pn−deg(f) ways, we have

A(n, χf ) = pn−deg(f)
∑
r

χ(r) = 0

by the orthogonality relation since χ 6= χo, and the sum is over all r with
deg(r) < deg(f).
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7.3.1 Proof of functional equation

Consider deg f to be odd.

Therefore,

L∗ (s, χf ) =

deg f−1∏
j=1

(
1− πj

ps

)
=

(−πdeg f−1

ps
)deg f−1

deg f−1∏
j=1

(
1− 1

πj
ps

)
=

(−1)deg f+1−2(
πdeg f−1

ps
)deg f+1−2L∗ (1− s, χf )

=

p|f | 12−s(p
2s

p
)L∗ (1− s, χf )

(as |π| = p
1
2 and (−1)deg f+1−2 = 1 since deg f = 2m± 1 =⇒ −12m±2 = 1

Consider deg f to be even.

L(s, χf ) = (1− p−s)L∗ (s, χf ) = (1− p−s)
deg f−2∏
j=1

(
1− πj

ps

)
=

(1− p−s)(−πdeg f−2

ps
)deg f−2

deg f−2∏
j=1

(
1− 1

πj
ps

)
=

(1− p−s)(−1)deg−2(
πdeg f−2

ps
)deg f−2L∗ (1− s, χf )

=

(1− p−s)|f | 12−s(p
2s

p
)L∗ (1− s, χf )

Q.E.D
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8 Multiple dirichlet series
Define an additive character on K∞. First let e0 be a nontrivial additive
character on Fp. Use this to define a character e? of Fq by
e?(a) = e0

(
TrFq/Fp a

)
. Let ω be the global differential dx/x2. Finally define

the character e of K∞ by e(y) = e? (Res∞(ωy)) for y ∈ K∞. Note that

{y ∈ K : e | yO = 1} = O

Fix an embedding ε from the the nth roots of unity of Fq to C×. For r, c ∈ O
we define the Gauss sum

g(r, ε, c) =
∑
y

ε
((y

c

))
e
(ry
c

)
.

For x, y ∈ K∞ we write x ∼ y if x/y ∈ K×n∞ .
Define the Dirichlet series

ψ(r, ε, η, s) =
(
1− qn−ns

)−1 ∑
c∈O m

ηn
c∼η

g(r, ε, c)|c|−s

where the sum is over all nonzero monic polynomials c ∼ η and |c| is qdeg c.
The η we will use are of the form π−i∞ , 0 ≤ i < n.
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Appendix

A Basic Topology

A.1 Heine-Borel Theorem
A.1.1 Set of Measure Zero

A subset N ⊆ R is called a set of measure zero, if for very ε > 0 there are (at
most) countably infinitely many open intervals I1, I2, . . . such that
N ⊆ I1 ∪ I2 ∪ . . ., and such that |I1|+ |I2|+ · · · =

∑∞
k=1 |Ik| < ε

Here for any interval I of the form (a, b), [a, b], (a, b], [a, b) we put |I| = b− a.

Lemma.
1. Subsets of a zero set are zero sets.
2. Any finite or countable union of zero sets is again a zero set.

Proof. 1.Any open cover of a set of of measure zero is also an open cover of
any subset.
2 .The case of a finite union is covered by the case of a countably infinite
union. Let Zk ( k ∈ N) be a countably infinite collection of sets of measure
zero, and let ε > 0. Then for each k, Zk may be covered by a countably infinite
union of open intervals Ik` such that

∞∑
`=1

|Ik`| <
ε

2k

Let Z =
⋃∞
k=1 Zk. Then Z ⊆

⋃∞
k=1 ∪∞`=1Ik` = {x ∈ R | ∃k, ` : x ∈ Ik,`}.

By the Cauchy Double Series Theorem
∑∞
k,`=1 |Ik`| =

∑∞
k=1

∑∞
`=1 |Ik`| =⇒

Now
∑∞
k=1

∑∞
`=1 |Ik`| ≤

∑∞
k=1

ε
2k

= ε
(

1
1− 1

2

− 1
)

= ε. But,
∑∞
`=1 |I1`| <

ε
2 .

Thus, Z is a set of measure zero.

A.1.2 Open cover

If S ⊆ R is any subset, an open cover or open covering of S is a family {Ui}i∈I
of open sets Ui ⊆ R such that S ⊆

⋃
i∈I Ui = {x ∈ R | ∃i : x ∈ Ui}

A.1.3 Compact set

A subset K ⊆ R is called compact, if every open covering has a finite subcover,
ie,

K ⊆
⋃
i∈I

Ui

31



then there are i1, i2, . . . , in ∈ I such that

K ⊆ Ui1 ∪ Ui2 ∪ . . . ∪ Uin

A.1.4 Theorem Heine-Borel

A subset K of R is compact if and only if K is bounded and closed.

A.2 Topological space
Let X 6= ∅. A topology on X is a collection of open subsets of X which satisfy
the following-
(1) X, ∅ are open.
(2) The union of any family of open sets is open.
(3) The finite intersection of any collection of open sets is open.

Suppose, τ = { all open subsets of X}. Then a topological space is a pair
(X, τ).

A.3 Manifolds
A subset S ⊆ R is called open if for every x ∈ s, there is ε > 0 such that
(x− ε, x+ ε) ⊆ U . A subset S ⊆ R is closed, if for every convergent sequence
an ∈ S we have lim an ∈ S.

A.3.1 Homeomorphism

A continuous map φ : X → Y is a homeomorphism if its bijective and φ−1

exists. Homeomorphism is a continuous function between topological spaces
that has a continuous inverse function.

A.3.2 Covering space

A covering space of X is a topological space C together with a continuous
surjective map:p : C → X 3 ∀ x ∈ X ∃ an open neighborhood U of x 3 p−1(U)
is a union of disjoint open sets in C, each of which is mapped
homeomorphically onto U by p.

A.3.3 Haussdorffness

A space X is Hausdorff if
∀ x, y ∈ X 3 x 6= y ∃ U, V ⊆ X open 3 x ∈ U, y ∈ V and U ∩ V = ∅

Lemma: A compact subset K ⊆ X of a Hausdorff space X is closed.

32



Proof: Pick y ∈ X\K. Each x ∈ K gives us x ∈ U and y ∈ V 3 U ∩ V = ∅ As
K is compact, ∃ finite set {xi}i∈I ⊆ K 3 K =

⋃
i∈I Ui Then

⋂
i∈I Vi is open &

disjoint from K ⇒ K closed as each y is contained in an open set disjoint from
K

A.3.4 Second countable

Let S be a set.S is countable if and only if there exists a bijection between S
and a subset of N. A countable basis for a topology X is a basis for X which is
a countable set. X is called second countable if it has a countable basis.

A.3.5 Atlases

A chart is a pair of an open set and a homeomorphism (U, φ) that maps
elements locally around a point say x of an open set in a manifold to Rn.
An atlas for a topological space is a collection of charts on a topological space
X which covers X. If the co-domain of each chart is the n− dim euclidean
space (basic coordinate system) then X is said to be a n− dim manifold.

A.3.6 Topological manifold

A topological manifold is a topological space that is Hausdorff and every point
possess an open neighbourhood homeomorphic to Rn.(locally similar to Rn-
we can map a point of the manifold onto the Rn plane)
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B Groups

B.1 Sub groups
A Subgroup is a subset which is also a group. H is a subgroup of G denoted
by H ≤ G. Two standard subgroups of G are G and the trivial group = {e}
where e is the identity element.

B.1.1 Cosets

For a subgroup H and some a in G \H, we define the left coset
aH = {ah : h ∈ H} and the right coset Ha = {ha : h ∈ H}.

If G is partitioned into k cosets (where each coset has same size denoted by
|H|) we say the index of G is k. Therefore, |H| · k = |G|, which is Langrange’s
theorem. Claim (1):if aH = {ah : h ∈ H} then aH ∩ bH = ∅ ∨ aH = bH.

Proof: Suppose ah1 = bh2 =⇒ ah = bh2h
−1
1 h ∈ H where h arbitrary element

in H. The right side belongs to H as closed under multiplication (H
subgroup).
Thereofore ,

∀ah ∈ aH : ah ∈ bH

giving us
aH ⊆ bH

Similarly with the other implication. Also |aH| = |H| as consider two elements
ah1 = ah2 multiplying by a−1 yields the required result.

B.1.2 Langrange’s theorem

Lagrange’s Theorem: If H ≤ G, then |H| divides |G|.

Proof: The case where subsets are {e} and G are trivial. Now suppose G is a
finite group with |G| = n Case : H < G and H 6= {e} Construction: Pick
a1 ∈ G not in H. Now consider a1H = {a1 · h ∀ h ∈ H}(left coset)
3 H

⋂
a1H = ∅. Claim (2): H and a1H have no element in common Assume

there is an element in H and a1H: This means a1 · hi = hj for some hi and hj
in H

a1 · hi = hj

(a1 · hi) · h−1
i = hj · h−1

i

a1 ·
(
hi · h−1

i

)
= hj · h−1

i

a1 · e = hj · h−1
i

a1 = hj · h−1
i ∈ H =⇒ a1 ∈ H

Contradiction! Similarly, consider a2H = {a2 · h ∀ h ∈ H}(left coset)
3 H

⋂
a1H

⋂
a2H = ∅. Repeat the process till G is divided into k such
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non-overlapping left cosets. Each coset has size |H|(by claim). Number of
cosets = k times size of each coset |H| = |G| ie n. Therefore, |H| divides |G|.

B.2 Orbits, representatives
Let X = G-set,
Definition: For x ∈ X, the G-orbit of x ∈ X is G · x = {g · x | g ∈ G} ⊆ X

Orbit Decomposition
Theorem: Let X = G-set. Then X is partitioned into G-orbits. The set of
G-orbits is denoted X/G.

Proof: Suffice show x ∼ g.x for x ∈ X, g ∈ G defines an equivalence relation.
(1)x ∼ 1 · x = x
(2)x ∼ g · x and g · x ∼ g−1 · (g · x) =

(
g−1g

)
· x = 1 · x = x

(3)x ∼ g · x, g · x ∼ h(g · x) and x ∼ (h · g) · x = h · (g · x)

A representative of an equivalence class is any element of X which belongs to
that equivalence class. A complete set of representatives R is a list of elements
of X such that you have a representative for each class. That is to say that
any element of X will be equivalent to exactly one element of R.

B.3 Lie Groups
A differentiable manifold is a Hausdorff and second countable topological
space X, together with a maximal differentiable atlas on X.

Let G be a topological group, with a differentiable manifold structure. If The
group operation ∗ : G×G→ G and the inverse operation ∗−1 : G→ G are
differentiable maps. G is a Lie Group

B.4 Symplectic groups
A compact (topological) group is a topological group whose topology is
compact. A topological space X is said to be disconnected if it is the union of
two disjoint non-empty open sets. Otherwise, X is said to be connected.

Sp(2n,R)-The symplectic group over the field of real numbers non-compact,
connected, simple Lie group.

Sp(2n,C)-The symplectic group over the field of complex numbers is a
non-compact, simply connected, simple Lie group.
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B.5 Metaplectic groups
B.5.1 Cover group

A covering group of a topological group G is a covering space C of H such that
C is a topological group and the covering map p : C → G is a continuous
group homomorphism.

B.5.2 Double cover group

A topological double cover in which G has index 2 in C.

Mp(2n)-The metaplectic group is a double cover of the symplectic
group Sp(2n).
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C Function field theory

C.1 Theory
C.1.1 Algebraic function field

If K is a subfield of L then we can view L as a field extension over K.We
define [L : K] = degree of extension :=dimk L. If the extension if a finite
extension then for all elements in L each element can be represented as a
K-basis of L.(γ =

∑n
i=0 aiβi, βi ∈ K)

Now suppose α ∈ L, we say L is algebraic over K if ∃f(x) ∈ K[x] 3 f(α) = 0, f
non trivial polynomial.Also, ∃!p(x) ∈ K[x] monic irreducible polynomial in
K[x] s.t p(α) = 0 ⇒ p(x) is called the minimal poly of α.

L is called an algebraic extension over K if γ ∈ L is algebraic over K.

x ∈ L is transcendental over K if ∃ no polynomial f(x) ∈ K[x] 3 f(x) = 0

An algebraic function field over K is a field extension s.t. ∃x ∈ L which is
transcendental over K and [L : K(x)] <∞

C.1.2 Discrete Valuation ring

Let F/K be a function field, a valuation ring θ of F/K is a subring of F such
that:
(1)K $ θ $ F .
(2)∀α ∈ F, α ∈ θ ∨ α−1 ∈ F ∨ both z ∈ θ×is a unit.

Note: If θ is a valuation ring then P := θ \ θ× is the unique maximal ideal.

A PID with unique max ideal is a discrete valuation ring.
Every element t ∈ P 3 P = tθ is called prime element for P .

C.1.3 Maximal Idea, PID

For an ideal P of a ring R it is maximal if the following equivalent conditions
hold:
- There exists no other proper ideal J of R so that P ( J .
- For any ideal J with P ⊆ J , either J = P or J = R.
-The quotient ring R/P is a simple ring.(a ring whose ideals are itself and zero)

Principal ideal is an ideal I in a ringR that is generated by a single element a
of R through multiplication by every element of R. An integral domain is a
nonzero commutative ring in which the product of any two nonzero elements is
nonzero. A PID or a principal ideal domain is an integral domain in which
every ideal is principal.
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C.2 Riemann Roch Theorem
C.2.1 Divisors

Consider the alg. extension of K over Fp(x). Let P be the unique maximal
ideal. Let K be a function field, and let DK be the group of divisors of K,
which is the free commutative group generated by the primes.A divisor is a
finite sum

D =
∑
P

a(P )P

where P are primes of K. A divisor D is said to be effective if
a(P ) = ordP (D) ≥ 0 for all P . We denote this by D ≥ 0.
Let a ∈ K∗ (group of diviors of degree 0). The divisor of a, (a),is defined to be∑
P ord P (a)P (coefficients- ord P (D)). The degree of a divisor is defined as

deg(D) =
∑
P a(P ) degP .The map a→ (a) is a homomorphism from K∗ to

DK . The image of this map is called the group of principal divisors. Let

(a)o =
∑
P

ordordP (a)>0(a)P and (a)∞ = −
∑

ordP (a)<0

ordP (a)P.

The divisor (a)o is called the divisor of zeros of a and the divisor (a)∞ is called
the divisor of poles of a. Also (a) = (a)o − (a)∞.

C.2.2 Theorem

Definition. Let D be a divisor. Define L(D) = {x ∈ K | (x) +D ≥ 0} ∪ {0}.
The dimension of L(D) over F is denoted by l(D). The number l(D) is
sometimes referred to as the dimension of D.them as ord P (D).Two divisors,
D1 and D2, are said to be linearly equivalent, D1 ∼ D2 if their difference is
principal, i.e., D1 −D2 = (a) for some a ∈ K∗.The divisor class group is the
group of divisors modulo linear equivalence

Lemma If deg(D) ≤ 0 then l(D) = 0 unless D ∼ 0 in which case l(D) = 1.
Proof. If deg(D) < 0 and x ∈ L(D), then deg((x) +D) is both < 0 and ≥ 0
which is a contradiction. If deg(D) = 0 and L(D) is not empty, let x ∈ L(D).
Then (x) +D ≥ 0 and has degree zero, so it must be the zero divisor. Thus,
D ∼ 0. Conversely, if D ∼ 0, then l(D) = l(0) = 1 since L(0) = F because
x ∈ L(0) implies x has no poles.

Genus: The genus of the function field K is the integer g defined by

1− g = min
D

(l(D)− deg(D)),

where the minimum is taken over all divisors D ∈ Div(C).
Theorem (Riemann-Roch) There is an integer g ≥ 0 and a Div(C) such
that for C ∈ Div(C) and D ∈ DK we have

l(D) = deg(D)− g + 1 + l(C −D)
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Remarks: if we set D = 0 we get l(C) = g, if we set C = 0 we get
deg(C) = 2g − 2 and lastly If deg(D) ≥ 2g − 2, then l(D) = deg(D)− g + 1 .

Let hk be the number of divisor classes of degree
0. For any divisor D, the number of effective divisors in Div(D) is pl(D)−1

p−1 By

remarks and theorem we get,if degD = n > 2g − 2, then bn = hk
pn−g+1−1

p−1 .

C.3 Zeta function
The zeta function of K, ζK(s), is defined by

ζK(s) =
∑
D∈DK
D≥0

|D|−s =
∏
P∈SK

(
1− |P |−s

)−1
=

∞∑
n=1

bn
qns

where the sum runs over all divisors D ∈ DK , and the product over all primes
P ∈ SK(set of all primes). (if K = Fp(x) this is the completed zeta function)

By the definition of the completed zeta function and L-function :

L∗(s, χD) :=
ζK(s)

ζk(s)
=
(
1− p−s

)−λ
L (s, χD)

where
λ =

{
1 degD even
0 degD odd

C.3.1 Theorem

Let K be a function field over Fp of genus g. Then

ζK(s) =
PK (p−s)

(1− p−s) (1− p1−s)

where PK(p−s) is a polynomial of degree 2g.
Proof: Let bn be the number of effective divisors of degree n in DK . Assume
that for n > 2g − 2, we have

bn = hK
pn−g+1 − 1

p− 1

Therefore ζK(s) becomes,

ζK(s) =

2g∑
n=0

bnp
−sn +

hK
p− 1

(
pg

1− p1−s −
1

1− p−s

)
p−s(2g−1)

by some manipulation we get,

ζK(s) =
PK(p−s)

(1− p−s)(1− p1−s)

Q.E.D

39



C.3.2 Reimann Hypothesis for Function fields

Let K be a function field over Fp. Then, all the roots of ζK(s) lie on the line
Re(s) = 1/2. Equivalently, the inverse roots of PK(p−s) have absolute value√
p

Thus, the Riemann hypothesis for ζK(s) = ZK (q−s) translates into the
statement that the inverse roots of PK (q−s) have absolute value √p writing

PK(p−s) =

degPK∏
j=1

(
1− πj

ps

)

as ζK(s) = 0⇐⇒ PK (p−s) = 0⇐⇒ p−s = π−1
j , j = 1, . . . ,degPK

Then, if Re(s) = 1/2, we have

πj(K)−1 = p−1/2p−i Im(s) ⇐⇒ |πj | p1/2, j = 1, . . . ,degPK

Remark: if K = Fp(X),

ζK(s) =
PK (p−s)

(1− p−s) (1− p1−s)

=
ζK(s)

ζk(s)
=
PK (p−s)

(1− p−s)

and let L(s, χ) = PK (p−s).
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D Multiple Dirichlet Series Theory

D.1 Additive characters of Finite fields
Let eo be the additive character on Fp given by eo(j(modp)) = exp(2πij/p).
We use this to define an additive character e? on Fq by
e?(x) = eo

(
TrFq/Fp(x)

)
(here q = ps (prime power))

By definition, each ? ∈ Fq induces the additive character e? : Fq → C× with

e?(x) = exp

(
2πi · Trq/p(?x)

p

)
where Trq/p(x) =

∑s−1
i=0 x

pi denotes the trace of Fq on Fp.

D.2 Terminology

Let µn = {a ∈ Fq : an = 1} and let χ : F×q → µn be the character a 7→ a
q−1
n .

Let K be the rational function field Fq(t) with polynomial ring O = Fq[t]. We
let K∞ = Fq((t)) denote the field of Laurent series in t−1 (the completion of K
at the infinite place) Let deg denote the degree of an element of O. We shall
write π∞ for t−1 when we consider the latter as an element of K∞. Also, let
Omon denote the set of monic polynomials in O. For x, y ∈ O relatively prime,(
x
y

)
denotes the nth order power residue symbol. We have the reciprocity law(

x

y

)
=
(y
x

)
for x, y monic.

D.3 Differentials Rings
D.3.1 Places

A place of a number tield K is an equivalence class of absolute values on K.An
absolute value is a notion to measure the size of elements x in K. Two
absolute are considered equivalent if they give rise to the same notion of
smallness. The equivalence relation between absolute values | · |0 ∼ | · |1 is
given by some λ ∈ R>0 such that | · |0 = | · |λ1 meaning we take the value of the
norm | · |1 to the λ -th power.

D.3.2 Global rings

A derivation is a map d of a ring R into itself and satisfies the relation
d(a · b) = ad(b) + bd(a). Let K be a number field (of finite degree over Q ) and
let PK be the set of primes or finite places of K, respectively. Then every
p ∈ PK defines a nonarchimedean valuation | · |p on K with valuation ring Op,
valuation ideal Pp (or p for short) and with residue field Kp := Op/p. In the
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case SK ⊆ PK is a finite subset of places we use the notation P′K := PK\SK
and O′K is called a global ring.

O′K := OSK :=
⋂

p∈P′K

Op ⊆ K

Now let F/K be a function field of one variable and t ∈ F transcendental over
K. Then F/K(t) is a finite extension. By extending the derivation ∂t := d

dt
from K(t) to F , the field F becomes a differential field (F, ∂F ) . Moreover,
every place p ∈ PK can be uniquely extended to a place P or a valuation | · |q
of K(t), respectively, by assuming∣∣∣∣∣

n∑
i=0

ait
i

∣∣∣∣∣
P

= max
{
|ai|p | i = 0, . . . , n

}
(GauB extension). The set of places PF of F lying over any such GauB
extension P of p ∈ PK is denoted by

PF := Pt,F :=
{
PF |PF |K(t) = P GauB place over p ∈ PK

}
and is called the set of t -extensions of PK . (this set is referred to as the set of
t -functional primes of F/K.) Likewise we use the notation

SF := {PF ∈ PF |PF |K = p ∈ SK}

and P′F := PF \SF . Then the intersection

O′F := OSF :=
⋂

Pp∈PF

OPF ⊆ F

Throughout this note a subring O′F of F with nontrivial derivation ∂F |O′F is
called a global differential ring (global D-ring) if ∂F (O′F ) ⊆ O′F and
∂F (PF ) ⊆ PF for all PF ∈ P′F

D.4 Global Differentials
D.4.1 Riemann Surface

Given two charts, (U1, ϕ1) , (U2, ϕ2), on a n-dimensional topological manifold,
such that: U1 ∩ U2 6= ∅, we get transition maps:
ϕ1 ◦ ϕ−1

2 : ϕ2 (U1 ∩ U2)→ ϕ1 (U1 ∩ U2), and
ϕ2 ◦ ϕ−1

1 : ϕ1 (U1 ∩ U2)→ ϕ2 (U1 ∩ U2) Two charts, as above, are called
compatible if the transition maps, as above, are homeomorphisms. If
U1 ∩ U2 = ∅, then they are compatible.

A collection of charts that are pairwise compatible and cover X (topological
space) gives rise to a Riemann Surface.
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D.4.2 Local parameter

A complex variable t defined as a continuous function tp0 = φp0(p) of a point p
on a Riemann surface X, defined everywhere in some neighbourhood V (p0) of
a point p0 ∈ X and realizing a homeomorphic mapping of V (p0) onto the disc
D (p0) = {t ∈ C : |t| < r (p0)}, where φp0 (p0) = 0.
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