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1. INTRODUCTION

1.1. Dirac Delta Function [1]. The dirac delta function ¢ is a generalized function over the real numbers
where it is zero everywhere except at 0. We can construct it using a limit of the delta-sequence given below,
n o _1 1
Suty=1 2 “w<t<gy
0  otherwise

From the above sequence we can see that d,,(¢) converges to a spike (as n — 00) at t = 0 with infinite height
and zero width with the property

oo
/ 5 (1)t = 0,%n > 1
— 00
Now assume a continuous function f(t). We can write

min  f(¢) / f@W)o,(t)dt < max f(t)

te[ =2, 1] te[=1,1

n n n}

Since,
lim min f(¢)= lim max f(t) = f(0),

n—)oote[ 1 1] n~>oot€[ 1 1]

n 'n n'n

then by the squeeze theorem, we can write
o0

lim [ f(t)0a(t)dt = £(0).

n—oo J_

Definition 1. The dirac delta function can be defined by the following equality:
f(@)o(t)dt = f(0)
for any a > 0 and any continuous function f. This gives us the following relation,
s+a
| st sar = 19
(This is also called the Sifting property.)
1.2. Spectral Theory.
Definition 2. (pre-Hilbert) Let X be a complex vector space. A Hermitian inner product on X is a function
() : X x X — C, which is :
(1) (positive non-degenerate) (Vx € X)(z,x) > 0,{(z,z) =0 iff ¢ = 0.
(2) (sesquilinear) (Va, 8 € C)(Vx,y,z € X), (ax + By, z) = alx, z) + By, z)
(3) (conjugate-symmetric) (Va,y € X)(y,x) = (x,y)

A space is complete if all cauchy sequences converge to a limit . A Hilbert Space is a complete inner product
space. In fact every Hilbert space is a Banach Space but the reverse is not true.

Definition 3. Banach space: Let V be a vector space. A norm is a mapping ||-|| : V — [0, 00) that satisfies:
(1) [l +yll < llzll + llyll-
(2) |laz|| = allz|| for all a € R.
(3) ||z|| =0 implies that x = 0.
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A complete normed space is called a Banach space.

We can now define an inner product in function space. An inner product in the vector space of continuous
functions denoted by C° ([a,b],C) is defined as follows, given two arbitrary functions u(x),v(z),z € [a,b),
introduce the inner product,

b
(u,v) :/ uv*dx, *: complex conjugation.
a

Theorem 1. (Fredholm Alternative theorem )

For a linear system Ax = b, A* which is the adjoint satisfying the property (Az,y) = (x, A*y) for all
x,y, € C" exactly one is true:

1) Solution of Ax = b, if it exists, is unique if and only if x = 0 is the only solution of Az = 0.

1) The equation Az = b has a solution if and only if (b,v) =0 for all v satisfying A*v = 0.

Proof: 1) Assume that Az = 0 for x # 0 and Azg = b. Then A (xo+ ax) = b for all a. Therefore, the
solution is not unique. Conversely, if there are two different solutions, x; and x, satisfying Az; = b and

Az = b, then one has a nonzero solution = x1 — x9 such that Az = A (x; —z2) = 0.
ii) Let A*v =0 and Azg = b. Then we have

(b,vy = (Azo,v) = (x9, A"0) =0

For the second part we assume that (b,v) = 0 for all v such that A*v = 0. Write b as the sum of a part
that is in the range of A and a part that in the space orthogonal to the range of A,b = b, + b,. Then,
0 = (by, Az) = (A*D, x) for all z. Since (b,v) = 0 for all v in the nullspace of A*, then (b, b,) = 0 Therefore,
(b,v) = 0 implies that

0= (b,b,) = (by + b, bo) = (bo, bo)

This means that b, = 0, giving b = b, is in the range of A. So, Az = b has a solution. (]

The same can be said about linear operators, let L be a bounded linear operator on a Hilbert space with
adjoint LT. Then exactly one of the following is true:
i) The inhomogeneous problem
Lu=f
has a unique solution u.
i1) The homogeneous adjoint problem
Ltu=0
has a non-trivial solution.

Fredholm Alternative theorem is established by taking the inner product of (1.1) with the adjoint null
space function v(z) and we obtain,

(v, Lu) = (v, f)

<LTv7u> = (v, f)
1.3. Green’s Functions. The focus of this paper is to construct the appropriate Green’s function for the
following BVP (A):

2 + N2 =0(t - s)

2(0) = z(w)

2'(0) = z'(w)
We first solve Ly = f, a differential equation with homogenous boundary conditions. The Sifting property
mentioned earlier can be written as,

l
(.5 (t— 5)) = / F(O8 (6 — s)dt = f(s), te[0.]]
Now we can consider the following problem,
Lu=f
L1G(t,s) = 6(t — s)

where x € [0,1] and LT is the adjoint operator with its boundary conditions. G(t, s) is the Greens function.
Taking the inner product of Lu = f with respect to G(t, s) we get,

(Lu,G) = (u, L'G) = (f,G)

<u76(t - S)> = <f7 G>

u(t) = (£, G).

This gives us

u(t) = /0 FOG(, $)dt
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and thus the inverse operator

l
LUf) = / F(O)G(t, )ds

can be computed.

2. SOLUTION OF z + A2z = §(t — s)

From the above section we can define the Greens function G(t, s) of L to be the unique soltion to the problem
LG = §(t — s), where L is the general linear second order differential operator. We now construct the green
function for A: From the definition of the dirac delta function, at all points ¢ # s, 2" + A2z = 0. Solving
this we get homogenous solution is k cos(At) + ¢sin(At). Therefore our Greens function is,

3 51 < <
(1) Git,s) = {c1 cos(At) + easin(Mt) 0<t<s<w

cgcos(At) + ¢qsin(At) 0<s<t<w

To solve for G(t,s) we have to solve for ¢i,ca,c3,cq, we can do this by solving the following system of
equations,

The periodic boundary conditions,

(2) x(0) = z(w), kcos(0) + csin(0) = k cos(Aw) + csin(Aw)
(3) 2'(0) = 2’ (w), —kAsin(0) + cAcos(0) = —kAsin(Aw) + cA cos(Aw)
At t = s (as G(t,s) is continuous) ,
tlﬁir?+ G(t,s) — tligl* G(t,s)=0
(4) 3 cos(AS) + ¢4 8in(As) — ¢1 cos(As) — casin(As) =0
and the ”derivative” jump of G(t, s),
lim G'(t,s) — lim G'(t,s) =1

t—st t—s—

(5) —c3Asin(As) 4+ cg A cos(As) — (—ep Asin(As) + oA cos(As)) =1

Remark 1. Why lim;_, .+ G'(t,s) — lim;_, .- G'(t,s) =17

Consider LG = 6(t — ), this is zero when t < s and t > s and ¢ is infinity when t = s. Which tells us the
first derivative must be discontinuous and when we take the second derivative it diverges. Now integrate the
given ode from s — € to s+ € and let ¢ — 0. We get,

s+e aG s+e ) s+e

—€ S—€
The second term on the L.h.s vanishes as ¢ — 0 as the integrands are finite and so we get,

oG oG

Casl B S
ot |,_.. ot

t=s—

Solving (2), (3), (4) and (5) we get our Greens Function,

sin(A(t — s+ w)) +sin(A(s — t))

(6) G(t,s) = 2A(1 — cos(\w)) 0<t<s<w
,8 sin(A(s — t + w)) + sin(A(t — 5)) eie

2A(1 — cos(Aw)) 8 w

™ Git.s) = {g

We can verify this as,
lim G(t,s) — lim G(t,s) =0

t—st t—s—
lim G'(t,s) — lim G'(t,s) =1
t—st t—s—

G(t,s) = G(s,t)
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3. SOLUTION OF z" = f(t,xz(t),2'(t))

Consider the following B.V.P (B),

Notice the above ODE can be written as,
(8) o+ N2 (t) = N2x(t) + f(t,z(t), 2/ ()
Note: The solution to the differential equation 2" +2 2 = §(t — s) is the Greens function we obtained above.

Lemma 1. I claim the solution to the above differential equation (20) is,

9) / G(t,s) {f (s,2(s),2(s)) + Nz(s) } ds

Why so? FEzistence discussed later
Proof: Need to show x(t) satisfies the BVP (B),

/Gts{fssc '(5)) + A?x(s) } ds
— a/ G(t,s)h(s)ds, h(s)= {f(37x(5),$/(8))+)\2x(8)}

d
dt/ Ga(t,s)h(s)ds + — i Gl(t s)h(s)ds

t w
= Ga(t,t7)h(t™) + Mh(s)ds — Gi(t, tT)h(tT) + 4 Mh(s)ds
0 ot dt Jow Ot
b 0G,(t, s) “ 0G(t,s)
= e h(s)ds + a o h(s)ds

AGy (t,t7) /t‘ D?Gy(t, s) OG1(t,t), . /w D?Gy(t, s)
" __ e\ J AN R S o e\
z(t) = 5 h(t™) + ; 9 h(s)ds 5 h(t™) + " o h(s)ds

L 92Gy(t, 5) “ 902G (t, )
_h(t)+/0 Th(s)dw/t+ o hls)ds

= h(t) + N2x(t) — N2x(t) + /0 aG;it(;’S)h(s)ds + /: 6G817t(2t’s)h(s)ds

= h(t) + N\z(t) —|—/0 6G827t(2t75>h(s)d$ + /: 8G817t(2t75)h(3)d5 — \2x(1)

=h(t)+ A2 (/t Ga(t, s)h(s)ds + /‘*’ Gy (t, S)h(S)dS)) +
0 tt

b 92G,(t, s) “ 092Gy (t, s) 2
/O Th(s)d”/ﬁ S h(s)ds — Xt

/: (aQ%t(zt’S) +Gut, 8)) h(s)ds — \2x(t)

= h(t) + /Ot_ <82G82t(f’3) + A2Gy(t, s)> h(s)ds+

/: (82%1;’5""’) + Gt s))o h(s)ds — \2a(2)

0
x" = h(t) — \z(t)algorithmic
Rearranging we get,

o+ Na(t) = Na(t) + f(t,x(t),2' (1) = 2 = f(t,z(t),2' (1))



PERIODIC SOLUTIONS OF SECOND-ORDER EQUATIONS 6
Now we have to show that the boundary conditions are satisfied, i.e
2(0) = z(w)
2/ (0) = 2’ (w)
Consider z(0) = z(w),

(10) x(t) :/0 Gg(t,s)h(s)ds—l—/: Gi1(t, s)h(s)ds

Well 2(0) = x(w) as we know G(t,s) satisfies the BVP (A). Another way to verify is by just evaluating
G1(0, s) and Ga(w, s).
Consider /(0) = 2’ (w),

e aGg(t 8) “ 8G1(t S)
11 "t) = 7 e
(11) 2(#) /0 20 ) + /t S n(s)s
“ 6G1 (O S)
’ _ y
2(0) = A F ) )
¥ 0Ga(w, s)
"(w) = —=——""2h(s)d
v = [ S s
By a similar argument we get 2'(0) = 2’(w).
Therefore we showed the integral satisfies the ODE. (]

4. DEGREE THEORY

Let A be a mapping: A : U € RY — RY, where U is an open bounded set. We defined the degree of the
mapping at p,

deg(A,U,p) = Z sign (det Ja (x;))
z, €A~ (p)

as long as A~1(p) are regular points. Let h : RN — R is a smooth function such that

/]RN h(z)dzr =1,

and h(z) = 0 outside of a ball B.(0) for some small € > 0. Here x = (21,...,zn) and do = dzy - - dzy.

deg(A,U,0) = /]RN h(A(z)) det J4(x)dx

for x = (x1,...,2,).
Lemma 2. We show the above integral is independent of h.

Proof. By induction. For n = 1, Let n(z) be another function with support in (—¢,¢) and

/ n(z)de =1
R
Therefore, w = h(x) — n(z) has the property

/ w(z)dr =0

R
We show

/ (h(A()) ~ n(A) }A' (2)dz = 0

For simplicity, let us denote h(A(x)) — n(A(x))}A'(z)dz = f(x)dz. We show, there is g with support in

(—¢,¢€) such that

It is enough to take g as
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Therefore, as g has a support in (—¢,¢),g vanishes outside any sufficiently large interval in R by the
Fundamental Theorem of Calculus,

/ f(@)da = / d(g)(x) = g(50) — g(—00) = 0
R R
and therefore
/ h(A(2) A (z)dz / n(A(z) A’ (z)dz.
R R

For n =2, let h(x1,22) and n (21, z2) are real valued functions with support in B.(0) such that

/ h(z1,x9) dridas :/ n(x1,x2) dridas =1
R2 R?

For w=h —n,

/Rz w(z)dz =0

For f (z1,22) = {h (A (z1,22)) — n(A(x1,22))} det J4 (z1,x2), we show there is an expression

9= g1 (x1,22) dx1 + g2 (21, 22) dxa,
with support in B, (0) such that
dg (x1,22) = f (21, 22) dr1das
If we are able to show that, then

f(z1,22) dzrday = / dg (z1,29) = 0.

R2 R2

as ¢g,w have compact support. Define g,

g(z1,22) = /_g: {f(t,l’g) - (/_Zf(xl,xg)dxl) T(xl)}dt

where 7 (z1) is a function with the property
o0
/ T (151) difl =1

— 00

It is simply seen that g(co,y) = g(x,00) = 0. We have

% + (/‘: [ (z1,22) dx1> 7(21) = f (21, 72)

Let us denote g3 (3) by
[ee]
g3 (z2) =/ [ (w1, 22) dy.
—00
This is a function of a single variable x5 and thus, there is g4 (x3) such that

g3 (v2) = dga (z2)

and therefore

fWh@)Z%%+QQQ%%ﬂED

Now assume for integral is independent of h for n = N. This means in RY there exists an w = f(z)dx

such that / w(z)dz = 0 with support in some B.(0) and there exists a g with support in B.(0) such that
RN
w = d(g).

We show the property is true for n = N + 1. Let 1 = ¢, (t,2) = (t,23...2n+1). Consider,

ot z) = / (f(s,2) — 7(s)r(x))ds

— 0o

/Z r(t)dt =1

r(z) = /Z ft,x)dt

where 7(s) has the property,

and set
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This is a function of N dimensions. By induction hypothesis, /r(x)dx = 0 and there exist ¢1,...,gn such
that

and each g; are supported in B.(0). Now

t N

g(t,x) = / f(s,z) —7(s) Z gi’j ds

—00

This integral vanishes in ¢ as g has support in B¢ (0), Thus

dg(t, z)
633,5

which gives us

(]
Assume D C RY is a bounded, open set and f : D — R is C'. Now suppose f : D — RY is smooth
and 0 ¢ f(0D). We call a point regular if J;(x) # 0 whenever z € D and f(z) =0
Lemma 3. We claim that the set of regular points f~1({0}) = {z1,x2,... 2N} is finite.

Proof: Note that f~1({0}) is compact since it is a closed subset of D. Now for {z;}ien € f~1({0}), the
Inverse Function Theorem ensures that we can find € > 0 3 f~1(B.(0)) is a union of disjoint neighbourhoods
say Be,(z;) of x; 3 each B, (z;) N D = z;. Therefore,

oy | Balw), i€Ne>0
zief1({0})

Since { B, (z;)} is an open cover of f~1({0}) we can find a finite subcover 3,

“1({0}) € B, (z1) U Be,(22) U ... B, (x,) = f~1({0}) is finite.

]
Proposition 1. Degree is Homotopically invariant: Let f : D c RN = RY be an open bounded set and f,
be defined as fi(x) : [0,1] x D — RY such that it is C°(]0,1] x ) and CY(D) for each t € [0,1]. Suppose
Vt,0 ¢ f:(0D). Then deg(fi, D,0) is independent of t.
Proof: Choose h(z) : U ¢ RN — RN 5 [\ h(x) = 1 with support in a small neighbourhood U of 0 >

UnN fi(0D) = ¢. It’s clear from the definition of an mtegral and fi(z) that.

deg(f1,D.0) = [ Wfo) 1 pu(a)do
D
is continous. Since deg(f, D,0) is an integrer, it doesn’t depend on ¢, we get deg(f, D,0) = deg(f;, D,0). O
Remark 2. I now show that,

S sign(|Jy(w)) = /D B () () e

z;€f~1(0)
where h, f, D are defined as before.

We know that f(x) has a finite number of regular zero points in D. Therefore we can choose the h 3 it’s sup-
port isin Be(0) C () f(Bei(z;)) (By the inverse function theorem). Since J¢(z;) has a fixed sign in each B, (x;),

/ W(f ()17 ()| dx = sign(|T; () / h(f (2))dz,
Bei(z;) Bei(zi)

= sign(|Jf(a:i)|)/ h(f(y))dy

f(Bei(z:))
= sign(|J¢(x:)])
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Therefore, (here n is the number of regular points)
[ ms@seias =3 [
D /B

= sign |y (z:)]
i=1

= deg(fa D, 0)
We get (12) as the integral is 0 outside |J"_; Be, (z;).

: h(f(x))dx

ei(@

(12)

Lemma 4. Let f € C*(U)NC(D), D is the open unit ball and f(z).x > OV x € dD. Show I c € D >
fle)=0.

Proof: Well we know f(z) # 0 on dD. Define the homotopy fi(z) : [0,1] x D — RY fi(z) = tx +
(1 —2)f(z) Yo € D. Since neither f(x) nor z # 0. This gives us fi(z) # 0 for x € D as fy(z) # 0
and fi(xz) # 0 for x € 0D = fi(x)x > (1 —t)z.x > 0 for z € ID and ¢t € (0,1). Therefore,
deg(f, D,0) = deg(f:, D,0) = deg(I,D,0) =1#0. Thus 3¢ > f(c) =0. O

Theorem 2. Brouwer Fized Point Theorem: Let f € CY(D)NC(D), f: D - D = Jc€ D >
fle)=c

Proof: Let D = B.(0),e > 0 and define the continuous homotopy f; : [0,1] x D — RN f,(z) = x — tf(z).
Assume f(z) # z for x € 9D, otherwise we are done. Then if x € 9D and t € [0,1), if z — tf(z) = 0
then e = ||z|| = t||f(2)|| < ||f(x)]] < € a contradiction and if z € 0D and ¢t = 1,2 — tf(z) = 0 implies
e = ||lz|| = ||f(x)]], but we assumed f(x) # x, Y& € 0D again a contradiction. From this we get that the
homotopy is defined and f;(z) # 0 for € 9D. By previous lemma, deg(I — f(z), D,0) = deg(I, D,0) = 1.00

5. INFINITE DIMENSIONAL CASE

1
2
<oo}.

Consider the [2-space
1= {(xl,arz,---) |zl =

This is a metric space with metric

oo

2
E Ty
i=1

Let B be the unit ball.
fiBr = B, (wy,0,) = (VI [alP a2,

The above mapping is continuous as for when x,y € I, d(x,y) — 0 we have,

2
1) - Fw)ll = J [VT=Tel? = VI=Tyl?| + iyl
< VIT=lZ = Tl + Tz — oI
< Vel + Tz = ol + e — o1
< V2l =yl + o~y = 0.

However f doesn’t have a fixed point. Assume f does , then since ||f(x)|| = 1 we get ||z|| = 1. Since

x=f(z) = x:( 1—||a:H2,x1,acg,~--> = == (0,21,20,...) = x1 =0,22 = 21,23 =22... —

21 =0=ux9 =.... But ||z|]| = 1. A contradiction.
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